Advertisement

Ceramic Matrix Composites; Microstructure and Thermostructural Performance Limits

  • M. H. Lewis
  • A. Tye
  • G. West
  • M. G. Cain
Chapter
Part of the NATO ASI Series book series (ASHT, volume 43)

Abstract

The post 1970s materials era has been especially active in the development of novel intermetallic and ceramic microstructures for lightweight rigid components which have potential for high temperature engineering application. This has been encouraged by the needs of the aerospace industries, in particular and the realisation that more conventional alloy systems have reached a development limit in relation to high temperature stability and deformation resistance. A well-publicised example is that of gas turbine components in which Ni-based Super-alloys typically limited to ~ 1000°C are operating at gas flow temperatures of 1600°C only with the aid of forced cooling air and an associated loss in thermal efficiency. The substitution of ceramics for metallic alloy components operating at surface temperatures requiring extreme cooling (1400–1800°C) or marginal cooling (1100–1300°C) offers a substantial performance or efficiency gain. Additional benefits may derive from control of combustion profiles with the reduction in environmentally-damaging NOx emissions[1].

Keywords

Creep Resistance High Temperature Stability Matrix Creep Matrix Crack Spacing Debond Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis, M.H., Marquis, P.M. and Butler, E.G. in ‘Ceramic Materials and Components for Engines’ ed. D.S. Tan et al (World Scientific Publ. 1995)53.Google Scholar
  2. 2.
    Lewis, M.H., in ‘Mechanical Behaviour of Materials at High Temperature’ eds. Moura-Branco , Ritchie and Selenicka (Kluwer 1996) 545.Google Scholar
  3. 3.
    Budiansky, B., Hutchinson, J.W. and Evans, A.G. (1986) J.Mech.Phys.Solids 2167.Google Scholar
  4. 4.
    Wu, X and Holmes, J.W., (1993) Am.Ceram.Soc. 76, 2695.CrossRefGoogle Scholar
  5. 5.
    Sutherland, S., Plucknett, K.P., and Lewis, M.H. (1995), Comp.Eng. 5 1367.CrossRefGoogle Scholar
  6. 6.
    Lewis, M.H., Daniel, A.M., Chamberlain, A., Pharaoh, M.W. and Cain, M.G. (1993) J. Microscopy, 169 109.CrossRefGoogle Scholar
  7. 7.
    West, G., (1997), Ph.D. thesis, University of Warwick.Google Scholar
  8. 8.
    He, M. and Hutchinson, J.W. (1989) J.Appl.Mech. 56 270.CrossRefGoogle Scholar
  9. 9.
    Evans, A.G., (NATO 1993) paper 2 AGARD report 795.Google Scholar
  10. 10.
    Chamberlain, A., Daniel, A.M., Pharaoh, M.W. and Lewis, M.H., (Woodhead Publ. 1993) Proc. HT-CMC1, Bordeaux, eds. R. Naslain, J. Lamon and D. Donmeingts, 321.Google Scholar
  11. 11.
    Vanswijgenhoven, E., Wevers, M. and Van Der Biest, O., (Am.Ceram.Soc. 1995) Ceramic Transactions 58 ed. A.G. Evans and R. Naslain.Google Scholar
  12. 12.
    Taplin, D.M.R., Lewis, M.H., West, G., and Boccaccini, A.R. in Proc. ICF9, Sydney (in press 1997).Google Scholar
  13. 13.
    Lewis, M.H., Daniel, A.M. and Cain, M.G. (MRS-Pittsburg 1995) in MRS Symposium Proceedings 365 ed. R.A. Lowden et al, 269.Google Scholar
  14. 14.
    Domergue, J.M., Vagaggini, E., Evans, A.G. and Parenteau, (1995) J.Am.Ceram.Soc. 78, 2721.Google Scholar
  15. 15.
    Hutchinson, J.W. and Jensen, H., (1990) Mech. of Mater. 9, 139.CrossRefGoogle Scholar
  16. 16.
    Plucknett, K.P., and Lewis, M.H., (1995) J.Mat.Sci.Lett. 14, 1223.CrossRefGoogle Scholar
  17. 17.
    Ricca, N., (1994) Doctoral Thesis, University of Bordeaux.Google Scholar
  18. 18.
    Brennan, J.J., Nutt, S.R., and Sun, E.Y. (1995 Am.Ceram.Soc.) Ceram.Eng. Sci. Proc. 58, 53.Google Scholar
  19. 19.
    Pharaoh, M.P., Daniel, A.M. and Lewis, M.H. (1993) J.Mat.Sci. 12, 998.Google Scholar
  20. 20.
    Bunsell, A.R. and Berger, M.H. (Trans.Tech.Publ. 1996), CMMC 96 eds. M. Fuentes, J.M. Martinez-Esnaola and A.M. Daniel, 15.Google Scholar
  21. 21.
    Ichikawa, H., Okamura, K. and Seguchi, T., (1995 Am.Ceram.Soc.) Ceram.Eng.Sci.Proc. 58, 65.Google Scholar
  22. 22.
    Baldus, H.P., Passing, G., Scholz, H., Sporn, D., Jansen, M. and Goring, J. (Trans.Tech.Publ. 1996), CMMC 96 eds M. Fuentes, J.M. Martinez-Esnaola and A.M. Daniel, 177.Google Scholar
  23. 23.
    Wilson, D.M., Lieder, S.L. and Lueneburg, D.C., (1995 Amer.Ceram.Soc.) Ceram. Eng.Sci.Proc. 16, 1005.Google Scholar
  24. 24.
    Wong, C.P. and Lewis, M.H., (1997) Univ. of Warwick research report.Google Scholar
  25. 25.
    Morgan, P.E.D. and Marshall, D.B., (1995) J.Amer.Ceram.Soc. 78, 1553.CrossRefGoogle Scholar
  26. 26.
    Cain, M.G., Cain, R.L., Tye, A., Rian, P., Lewis, M.H. and Gent, J., (Trans.Tech.Publ. 1996), CMMC 96 eds M. Fuentes, J.M. Martinez-Esnaola and A.M. Daniel, 37.Google Scholar
  27. 27.
    Lewis, M.H., Cain, M.G., Doleman, P., Razzell, A.G. and Gent, J., (1995 Am.Ceram.Soc.) Ceram. Transactions 58, 41.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. H. Lewis
    • 1
  • A. Tye
    • 1
  • G. West
    • 1
  • M. G. Cain
    • 1
  1. 1.Centre for Advanced MaterialsUniversity of WarwickCoventryUK

Personalised recommendations