Fracture Characteristics of Layered and Nano-Particle Reinforced Si3N4

  • J. Dusza
  • P. Šajgalík
Part of the NATO ASI Series book series (ASHT, volume 43)


In recent 10–15 years several attempts have been made with the aim of improving the mechanical properties, mainly the flaw tolerance and reliability, of silicon nitride based structural ceramics. As a result, the mechanical and fracture properties were significantly improved. This happened due to a close cooperation of scientists in basic and applied research and due to a detailed study of the microstructure characteristics of silicon nitride based ceramics and the influence of processing steps on microstructure and mechanical properties of these materials as well. The main scientific approaches used for this purpose are the following ones, Fig. 1:
  • The flaw diminution approach — improving the strength characteristics (characteristic strength and Weibull modulus) by reducing the critical defect’s size, [1–5],

  • The flaw tolerance approach — improving the flaw tolerance by activating localized bridges behind the crack tip in the form of mechanisms as frictional and mechanical interlocking or pull out, [6–10],

  • Nano-particle dispersion strengthening — improving the strength values by incorporating nano-sized second phase particles into the matrix, [11–15],

  • The laminar structure approach — improving the structural reliability by designing laminar (layered) composites with a promoted crack deflection at the interlayer boundaries and utilizing compressive residual stresses arisen due to the different thermal expansions of the neighbouring layers, [16–20].


Residual Stress Fracture Toughness Silicon Nitride Compressive Residual Stress Layered Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans, A.G. (1982) Structural reliability, a processing-dependent phenomena, J.Am.Ceram.Soc. 65, 127.CrossRefGoogle Scholar
  2. 2.
    Quinn G.D. and Morrell R. (1991) Design data for engineering ceramics: A review of the flexure test, J.Am.Ceram. Soc., 74, 2037.CrossRefGoogle Scholar
  3. 3.
    Lange, F.F. (1989) Powder processing science and technology for increased reliability, J.Am.Ceram.Soc., 72, 3.CrossRefGoogle Scholar
  4. 4.
    Petzow G, Telle R. and Danzer, R. (1991) Microstructural defects and mechanical properties of high-performance ceramics, Mat.Characterization 26, 289.CrossRefGoogle Scholar
  5. 5.
    Dusza, J., Šajgalík, P. (1995) Fracture toughness nad strength testing of ceramic composites In: Handbook of advanced materials testing, Ed. N.P. Cheremisinoff, and P.N. Cheremisinoff, Marcel Dekker, Inc., N.York, Basel, Hong Kong, 399–436.Google Scholar
  6. 6.
    Evans, A.G. (1990) Perspective of the development of high toughness ceramics, J.Am.Ceram.Soc. 73, 187.CrossRefGoogle Scholar
  7. 7.
    Fett, T. and Munz D. (1991) Influence of initial crack size, specimen size and loading type on R-curves caused by bridging stresses, Int.J.Fracture, 49, R21.Google Scholar
  8. 8.
    Li Ch..W., and Yamanis, J. (1989) Super-tough silicon nitride with R-curve behavior, Ceram. Eng. Sci. Proc. 10, 632.CrossRefGoogle Scholar
  9. 9.
    Petzow, G. and Mücklich, F. (1996) Microstructure — fascinating variety in stringent rule, Prakt.Metallogr., 33, 64–82.Google Scholar
  10. 10.
    Šajgalík, P., Dusza, J., and Hoffmann, M.J., (1995) Relationship between microstructure, toughening mechanisms, and fracture toughness of reinforced silicon nitride ceramics, J.Am.Ceram.Soc., 78, 2619–24.CrossRefGoogle Scholar
  11. 11.
    Niihara, K. (1991) New design concept of structural ceramics — ceramic nano-composites, J.Ceram.Soc.Japan, 99, 974.CrossRefGoogle Scholar
  12. 12.
    Belossi, A., Monterde, F., Botti, S., and Martelli, S., (1997) Development and characterization of nanophase Si3N4 based ceramics, Mat.Sci.Forum, 235–238, 255–260.CrossRefGoogle Scholar
  13. 13.
    Niihara, K., Izaki, K., and Nakahira A. (1990) The silicon nitride- silicon carbide nanocomposites with high strength at elevated temperatures, J. Jpn.Soc. Powder Metall., 37, 352–356.CrossRefGoogle Scholar
  14. 14.
    Niihara, K., Hirano, T., Nakahira A., Ojima, K., Izaki, K. and Kawakami, T. (1989) High temperature performance of Si3N4-SiC composites from fine amorphous Si-N-C powder, In: Proc.of the Symp. on Structural Ceramics and Fracture Mechanics. Ed. M. Doyama, S. Somiya and R.P.H. Chang, Materials Research Society, Tokyo, Japan, 107–112.Google Scholar
  15. 15.
    Dusza, J., Šajgalík, P. and Reece, M. (1993) Characterization of Si3Ne+SiC nano composites, 4th Euro-Ceramics, Ed.A.Bellosi, Gruppo Ed.Faenza, 4, 67–74.Google Scholar
  16. 16.
    Lii, D.-F., Huang J.-L., and Chou F.-Ch. (1996) Mechanical behaviour of Si3N4-SiC/Si3N4-Si3N4 layered composites, J. of the Ceram. Soc. of Japan, 104, 699–704.CrossRefGoogle Scholar
  17. 17.
    Šajgalík, P., Lenčéš, Z., and Dusza, J. (1996) Layered Si3N4 composites with enhanced room temperature properties, J.Mater.Sci., 31, 4837–4842.CrossRefGoogle Scholar
  18. 18.
    Clegg, W.J., Jendall, K., Alford, N.McN., Button, T.W., and Birchall, J.D. (1990), A simple way to make tough ceramics, Nature (London), 347, 455–457.CrossRefGoogle Scholar
  19. 19.
    Dusza, J. and Šajgalík, P. (1996) Strength and reliability improvement in Si3N4 ceramic materials, In: Proc. of Int. Conf.Deformation and Fracture in Structural PM Materials, Ed. Parilák L., Danninger H., Dusza J., Weiss 2, 61–73.Google Scholar
  20. 20.
    Dusza, J., Šajgalík, P., Rudnayová, E., Hvizdos, P., and Lenčéš, (1996) Fracture Characterization of silicon nitride based layered composites, Fracture Mechanics of Ceramics, 12, Ed. Brandt R.C., Hasselman D.P.H., Munz D., Sakai M., and Sevchenko U.Ya., 383–389.CrossRefGoogle Scholar
  21. 21.
    Niihara, K., Suganuma, K., Nakahira, A., and Izaki, K. (1990) Interfaces in Si3N4-SiC nano-composite, J.Mater.Sci.Lett., 9, 598.CrossRefGoogle Scholar
  22. 22.
    Pezzotti, G. and Sakai, M. (1994). Effect of a silicon carbide “nano dispersion” on the mechanical properties of silicon nitride, J.Am.Ceram.Soc. 77, 3039–3041CrossRefGoogle Scholar
  23. 23.
    Pezotti, G., Nishida, T., Sakai, M. (1995) Physical limitation of the inherent toughness and strength in ceramic-ceramic and ceramic-metal nanocomposites, J.Ceram.Soc., Japan, 103, 901.CrossRefGoogle Scholar
  24. 24.
    Hammer, M.P., Chan, H.M., and Miller, G.A. (1992) Unique oportunities for microstructural engineering with duplex and laminar ceramic composites, J.Am.Ceram.Soc., 75, 1715–1728CrossRefGoogle Scholar
  25. 25.
    Russo, C.J., Harmer, M.P., Charz, H.M., and Miller, G.A. (1991) Design of a laminated ceramic composite for improved strength and toughness, 93th Ann. Meeting of the Amer.Ceram.Soc., Cincinnati, Ceram. Matrix Comp. Symp., Paper No. 110-SV I.-91).Google Scholar
  26. 26.
    Marshall, D.B., Ratio J.T., and Lange, F.F. (1991) Enhanced fracture toughness in layered microcomposites of Ce-ZrO2 and A12O3, J.Amer.Ceram.Soc., 74, 2979–87.CrossRefGoogle Scholar
  27. 27.
    Becher, P, (1991) Microstructural design of toughened ceramics, J. Amer.Ceram.Soc., 74, 255.CrossRefGoogle Scholar
  28. 28.
    Lawn B.R., (1993) Fracture of brittle solids, Cambridge University Press, London.CrossRefGoogle Scholar
  29. 29.
    Sakai, M. (1991) Fracture mechanics and mechanisms of fiber-reinforced brittle matrix composites, J.Ceram.Soc., Japan, 99, 983.CrossRefGoogle Scholar
  30. 30.
    Dugdale, D.S. (1960) J.Mech.Phys.Solids, 8, 100–105.CrossRefGoogle Scholar
  31. 31.
    Barenblatt, G.I. (1962) The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Advances in Applied Mechanics, H.L. Dryden and T. von Karman, Academic Press, New York, 55–129.Google Scholar
  32. 32.
    Dreier, G., Elssner, G., Schmauder, S., and Suga, T. (1994) Determination of residual stresses in bimaterials, J.Mater.Sci., 29, 1441–1448.CrossRefGoogle Scholar
  33. 33.
    Wei, G.C., Becher, P.F. (1984) Improvement in mechanical properties in SiC by the addition of TiC particles, J.Am.Ceram.Soc., 67, 571–574.CrossRefGoogle Scholar
  34. 34.
    Chartier, T., Merle, D., and Bessou, J.L. (1995) Laminar ceramic composites, J.Europ.Ceram. Soc., 15, 452.Google Scholar
  35. 35.
    Seher, M., Bill, J., Aldinger, F., and Riedel, R. (1994) Processing and properties of carbon containing silicon nitride ceramics derived from the pyrolysis of polyhydridochlorozilazanes, Key Eng.Mater., 84–91, 101–106.Google Scholar
  36. 36.
    Shetty, D.K., Wright, I.G., Mincer, P.M., and Claver, A.H. (1985) Indentation fracture of WC-Co cermets, J.Mater.Sci., 29, 1441.Google Scholar
  37. 37.
    Chantikul, P., Antsis, G.R., Lawn B.R. and.Marshall, D.(1981) J.Amer.Ceram.Soc., 63, 539–543.CrossRefGoogle Scholar
  38. 38.
    Šajgalík, P., Dusza, J., Hofer, F., Warbichler, P., Reece, M., Boden, G., and Kozánková, J. (1996) Structural development and properties of SiC-Si,N4 nano-micro composites, J.Mat.Sci.Letters, 15, 72–76.CrossRefGoogle Scholar
  39. 39.
    Pezzotti, G., Sergo, V., Ota, K., Sbaizero, O., Muraki, N., Nishida, T., and Sakai, M., (1996) Residual stresses and apparent strengthening in ceramic-matrix nanocomposites, J.Ceram. Soc.of Japan, 104, 6, 497–503.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J. Dusza
    • 1
  • P. Šajgalík
    • 2
  1. 1.Institute of Materials ResearchSlovak Academy of SciencesKošiceSlovak Republic
  2. 2.Institute of Inorganic ChemistrySlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations