Advertisement

Titanium-Matrix Composites in Comparison with Ceramic Ones

  • S. A. Firstov
Chapter
Part of the NATO ASI Series book series (ASHT, volume 43)

Abstract

Modern tendencies in the development of so-called advanced structural materials especially for aerospace and auto motive applications can be defined in the following manner:
  1. a)

    Development of materials with high specific mechanical properties. According to Froes [1,2], the effect of property modifications by the same percent on structural weight results in a different degree of its variation. The greatest weight reduction is achieved by a density decrease while the effect of an increase in ultimate tensile strength, elastic modulus, and especially compressive yield strength increase is much lower;

     
  2. b)

    Improvement of high-temperature properties (creep resistance) of these materials;

     
  3. c)

    Enhancement of oxidation resistance, wear resistance, thermoshock resistance, etc.

     

Keywords

Fracture Toughness Titanium Aluminides Titanium Silicide Gamma Titanium Aluminides Transformation Toughening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Froes, F. H. (1994) Advanced metals for aerospace and automotive use, Material Science and Engineering A184, 119–133.CrossRefGoogle Scholar
  2. 2.
    Froes, F. H. (1996) Titanium world, Stainless steel world-March, 68–71.Google Scholar
  3. 3.
    Parker, D. A., Griffits, W. I. (1990) Ceramic Applications in Reciprocating Engines: Preliminary Results from the CARE and Other Programmes, Technology for the 90’s, Paper No30, 1–11.Google Scholar
  4. 4.
    Ashby, M. F. (1989) On the engineering properties of materials, Acta. Met., 37, No5, 1273–1293.CrossRefGoogle Scholar
  5. 5.
    Rice, R. (1981) Grain-Size Dependence of Fracture Energy in Ceramics, Journ. Am. Ceram. Soc. 64, No6, 345–354.CrossRefGoogle Scholar
  6. 6.
    Becher, P. F. (1991) Microstructural Design of Toughened Ceramics, J. Am. Ceram. Soc. 74 (2), 255–269.CrossRefGoogle Scholar
  7. 7.
    Barinov, S. M. and Schevchenko, V. Ya. (1996) Strength of engineering ceramics, Science, Moscow.Google Scholar
  8. 8.
    Gao, F., Wang, T. (1990) Apparent fracture energy of brittle materials by branching of crack and microcrack, J. Mat. Sci. Lett. 9, 1409–1411.CrossRefGoogle Scholar
  9. 9.
    Tsuruta, K., et al (1990) Foreign Object Damage Resistance of Silicon Nitride and Silicon Carbide, J.Am. Ceram. Soc. 73 (6), 1714–1718.CrossRefGoogle Scholar
  10. 10.
    Grigoryev, O. N., Firstov, S. A., Babiy, O. A., Orlovskaya, N. A., Homenko, G. E. (1994) Effect of zirconia (3 mol% yttria) additive on mechanical properties and structure of alumina ceramics, J. Mat. Sci. 29, 4633–4638.CrossRefGoogle Scholar
  11. 11.
    Galanov, B. A., Grigoriev, O.N., Milman, Ya. V., Trefilov, V. I. (1995) Ceramic-matrix composite, theoretical fundamentals, in V. I. Trefilov (ed.), Ceramic- and Carbon-matrix composites, published by Chapman and Hall, London, UK, 3–28.Google Scholar
  12. 12.
    Gnesin, G.G. (1995), Ceramic-matrix composite technology, in V.I. Trefilov (ed.), Ceramic- and Carbon-matrix composites, Chapman and Hall, London, UK, 29–52.Google Scholar
  13. 13.
    Barinov, S.M. (1995) Ceramic-matrix composite, mechanical properties, in V.I.Trefilov (ed.), Ceramic- and Carbon-matrix composites, Chapman and Hall, London, UK, 95–114.Google Scholar
  14. 14.
    Romashin, A. G., Burovov, A. D., Postnikov, A. A. (1995) Ceramic-matrix composite, engineering, in V.I. Trefilov (ed.), Ceramic- and Carbon-matrix composites, Chapman and Hall, London, UK, 115–157.Google Scholar
  15. 15.
    Maslennikova, G. N. et al. (1991) Ceramic materials, Strojizdat, Moscow, (in Russian)Google Scholar
  16. 16.
    Pezzotti, G., et al (1989) Processing and Mechanical Properties of Dense Si3N4-SiC- Whisker Composites without sintering Aids, J. Am. Ceram. Soc. 72 (8), 1461–1464.CrossRefGoogle Scholar
  17. 17.
    Barinov, S. M., Grigoriev, O. N., Krivoshei, G. I., Shevchenko, A. S. (1996) Influence of residual stress on fracture toughness of silicon carbide whiske reinforced alumina, J. Mat. Sci. Lett. 15, 931–932.Google Scholar
  18. 18.
    Grigoriev, O. N., Kovalchuk, V. V., Zametailo, V. Y., Jaroshenko, V. P. (1990) Structure, physical and mechanical properties and fracture pecularities in hot-pressed B4C-based ceramics, Poroshkovafa metallurgia 7, 38–43 (in Russian).Google Scholar
  19. 19.
    Paderno, Yu., Pademo, V., Filippov, V. (in press) The directional crystallization of eutectic compositions of rare earth and transition metal borides, Metallurgical Transaction.Google Scholar
  20. 20.
    Paderno, V., Pademo, Yu., Martynenko, A., Fillipov, V. (1995) Structural aspect of the creation fiber-reinforced toughened ceramics on the boride-basis, in S.A. Firstov (ed), Electron microscopie and strength of materials, JPMS NANU, Kiev, 95–112 (in Russian).Google Scholar
  21. 21.
    Lakisa, S., Lopato, L. (1996) The phase diagamm and the materials of the system Al2O3-ZrO2-Y2O3, in L. Parilak, H. Danninder, J. Dusza, B. Weiss (eds.), Deformation and fracture in structural PM materials, JMR SAS Kosice, Slovakia, V2, 292–295.Google Scholar
  22. 22.
    Lakisa, S. M., Lopato, L. M. (1997) Stable and Metastable Phase Relations in the System Alumina-Zirconia-Yttria, J. Am. Ceram. Soc. 80 (4), 893–902.CrossRefGoogle Scholar
  23. 23.
    Grinberg B. A., Sytkina V. I. (1985) New methods of the strengthening of the ordered alloys. Moscov, Metallurgie.Google Scholar
  24. 24.
    Nabarro, F. R. N. (1994) The superiority of super-alloys, Mat. Sci. and Eng., A184, 167–171.Google Scholar
  25. 25.
    Froes, F. H., Suryanarayana, C., Eliezer, D. (1992) Synthesis, properties and applications of titanium aluminides, J.Mat. Sci. 27, 5113–5140.CrossRefGoogle Scholar
  26. 26.
    Fuchs, G. E. (1993) The effect of processing on the microstructure and tensile properties of a γ-TiA1 based alloys, in F.H. Froes and J.L. Caplan (eds.) Titanium ‘92, Science and Technology, Publication of TMS, VII, 1275–1282.Google Scholar
  27. 27.
    Wheeler, D. A., London, B., Larsen, D. E., Jr. (1993) Structure-property relationships of investment cast gamma titanium aluminides, in F.H. Froes and J.L. Caplan (eds.) Titanium ‘92, Science and Technology, Publication of TMS, VII, 1267–1274.Google Scholar
  28. 28.
    Partridge, P. G., Ward-Close, C.M. (1993) Processing of advanced continuous fiber composites: Current practice and potential developments, International Materials Reviews, V38, No1, 1–23.CrossRefGoogle Scholar
  29. 29.
    Ward-Close, C.M., Minor, R., Doorbar, P.I. (1996) Intermetallic-matrix composites- a review, Inter metallics 4, 217–229.Google Scholar
  30. 30.
    MacKay, R.A., Brindley, P.K. and Froes, F.H. (1991) Continuous Fiber-Reinforced Titanium Aluminide Composite, JOM 43 (5), 23–29.CrossRefGoogle Scholar
  31. 31.
    Lewis III, D., Singh, M., Fishman, S. G. (1995) In situ composites, Advanced Materials and Processes 7, 29–31.Google Scholar
  32. 32.
    Mazur, V.I., Taran, Yu.N., Kapustnikova, S.V., Trefilov, V.I., Firstov, S.A., Kulak, L.D. (1994) US Patent, Titanium-matrix composite, No5366570, Nov. 22, 1994.Google Scholar
  33. 33.
    Dorochovich V., Kopan V., Silenko P. (1984) Some mechanical properties of the SiC-fibers, Poroskovaja metallurgy, N1, 55–59.Google Scholar
  34. 34.
    Upadhaya D., Silenko P., Shatwell R., Ward-Close, C., Froes F., Production Parameters, Mechanical Properties, Microstructural characteristics and Applications of continuous SiC Fiber, J.Mat.Sci (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • S. A. Firstov
    • 1
  1. 1.The Institute for Problems of Materials ScienceKievUkraine

Personalised recommendations