Functional Neuroimaging of Angina Pectoris

  • Stuart D. Rosen
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 202)


In the normal heart, both intrinsic mechanisms (such as coronary vascular autoregulation and Starling mechanical properties) and extrinsic (mainly neurohumoral) influences allow adaptation to a wide range of demand for output of blood 1. Even under resting conditions, oxidative metabolism is crucial to function of the heart, indeed mitochondria comprise 1/3 of the mass of the myocardial cells. Oxygen extraction is near maximal even under resting conditions at 60–70%, and is only increased to 80% with severe exercise. Therefore the increased oxygen required during exercise has to be obtained from an increase in myocardial blood flow (MBF) 2. In circumstances of cardiac disease — especially (and in the West, most commonly) — coronary artery disease (CAD), the limits of adaptation are much more closely confined. Critical stenosis of an epicardial artery, whether such a stenosis is static or dynamic, sharply reduces coronary vasodilator reserve (CVR, the ratio of maximal MBF/resting MBF) in the myocardial territory supplied by the stenosed vessel3. (With respect to vulnerability to reduction in perfusion or to increase in demand, it is well established that the subendocardium is at greater risk than the subepicardium; this issue has been reviewed in extenso by Hoffman 4 and will not be discussed further here). MBF and therefore oxygen supply cannot increase adequately to satisfy the increased myocardial demand and aerobic metabolism can no longer be sustained downstream. Regional contractile function is compromised.


Myocardial Ischemia Angina Pectoris Myocardial Blood Flow Brodmann Area Silent Myocardial Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Opie LH. The heart: physiology and metabolism. 2nd ed. New York: Raven Press; 1991 p. 52–66.Google Scholar
  2. 2.
    Hoffman Jl. Transmural myocardial perfusion. Prog Cardiovasc Dis 1987; 29:429–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994; 330:1782–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Malliani A. The conceptualisation of cardiac pain as a non-specific and unreliable alarm system. In: Gebhart GF, editor. Visceral pain. Seattle: IASP Press; 1995. p. 63–74.Google Scholar
  5. 5.
    Spyer KM. Central nervous control of the cardiovascular system. In: Bannister R, Mathias CJ, editors. Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. Oxford: Oxford University Press, Oxford 1992. p. 54–77.Google Scholar
  6. 6.
    Cechetto DF. Supraspinal mechanisms of visceral representation. In: Gebhart GF, editor. Visceral pain. Seattle: IASP Press; 1995. p. 261–90.Google Scholar
  7. 7.
    Meller ST, Gebhart GF. A critical review of the afferent pathways and the potential chemical mediators involved in cardial pain. Neuroscience 1992; 48: 501-24.Google Scholar
  8. 8.
    Mancia G, Mark AL. Arterial baroreflex in humans. In: Shepherd JT, Abboud FM, editors. Peripheral circulation and organ blood flow. New ed. Washington: American Physiological Society; 1983. p. 755–93.Google Scholar
  9. 9.
    Pagani M, Somers V, Furlan R, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 1988; 12:600–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994; 74:323–64.PubMedCrossRefGoogle Scholar
  11. 11.
    White JC. Cardiac pain: anatomic pathways and physiologic mechanisms. Circulation 1957; 16:644–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Francois-Franck CA. Signification physiologique de la résection du sympathetique dans la maladie de Basedow, l’épilepsie, l’idiotie et le glaucome. Bull Acad Med Paris 1899; 41:565–74.Google Scholar
  13. 13.
    Spinal cord stimulationGoogle Scholar
  14. 14.
    Hill JA, Pepine CJ. Myocardial ischemia and chest pain: a misunderstood and oversimplified relationship? Cardiol Clin 1986; 4:621–5.PubMedGoogle Scholar
  15. 15.
    Rosen SD, Paulesu E, Frith CD, et al. Central nervous pathways mediating angina pectoris. Lancet 1994; correlates of angina pectoris as a model of visceral pain. Lancet 1994; 344:147–50.Google Scholar
  16. 16.
    Rosen SD, Paulesu E, Nihoyannopoulos P, et al. Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med 1996; 124:939–49.PubMedGoogle Scholar
  17. 17.
    Fox PT, Raichle ME, Mintun MA, Dence C, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988; 241:462–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Raichle M. Circulatory and metabolic correlates of brain function in normal humans In: Plum F, editor. Higher functions of the brain. New ed. Washington: American Physiological Society, 1987. p. 643–74.Google Scholar
  19. 19.
    Mata M, Fink DJ, Ganier H, et al. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 1980; 34:213–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Friston KJ, Frackowiak RS. Imaging functional anatomy. In: Lassen NA, Ingvar DH, Raichle ME, Friberg L, editors. Brain work and mental activity. Copenhagen: Munksgaard; 1991. p. 267–79.Google Scholar
  21. 21.
    Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackowiak RS. The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 1990; 10:458–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 1991; 11:690–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Spinks TJ, Jones T, Bailey DL, et al. Physical performance of a positron tomograph for brain imaging with retractable septa. Phys Med Biol 1992; 37:1637–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Takao Y, Kamisaki Y, Itoh T. Beta adrenergic regulation of amine precursor amino acid transport across the blood-brain barrier. Eur J Pharmacol 1992; 215:245–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Opie LH. Drugs for the heart. 3rd ed. Philadelphia: Saunders; 1991. p. 143.Google Scholar
  26. 26.
    Talairach J, Tournoux P. Co-planar stereotactic atlas of the human brain. Stuttgart: Thieme; 1988.Google Scholar
  27. 27.
    Friston KJ, Passingham RE, Nutt JG, Heather JD, Sawle GV, Frackowiak RS. Localisation in PET images: direct fitting of the intercommissural (AC-PC) line. J Cereb Blood Flow Metab 1989; 9:690–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Camici P, Araujo LI, Spinks T, et al. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986,74:81–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Heberden W. Some account of a disorder of the breast. Med Roy Coll Phys Lond 1772; 2:59–67.Google Scholar
  30. 30.
    Warren J. Remarks on angina pectoris. N Engl J Med Surg 1812; 1:1–11.CrossRefGoogle Scholar
  31. 31.
    Babey AM. Painless acute infarction of heart. N Engl J Med 1939; 220:410–2.CrossRefGoogle Scholar
  32. 32.
    Kannel WB, Abbott RD. Incidence and prognosis of unrecognised myocardial infarction. An update on the Framingham study. N Engl J Med 1984; 311:1114–7.CrossRefGoogle Scholar
  33. 33.
    Epstein SE, Quyyumi AA, Bonow RO. Myocardial ischemia-silent or symptomatic. N Engl J Med 1988; 318:1038-43.Google Scholar
  34. 34.
    Schang SJ Jr, Pepine CJ. Transient asymptomatic S-T segment depression during daily activity. Am J Cardiol 1977; 39:396–402.PubMedCrossRefGoogle Scholar
  35. 35.
    Deanfield JE, Maseri A, Selwyn AP, et al. Myocardial ischemia during daily life in patients with stable angina: its relation to symptoms and heart rate changes. Lancet 1983; 2:753–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Quyyumi A, Mockus L, Wright C, Fox KM. Morphology of ambulatory ST segment changes in patients with varying severity of coronary artery disease. Investigation of the frequency of nocturnal ischemia and coronary spasm. Br Heart J 1985; 53:186–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Gottlieb SO, Weisfeldt ML, Ouyang P, Mellits ED, Gerstenblith G. Silent ischemia as a marker for early unfavorable outcome in patients with unstable angina. N Engl J Med 1986; 314:1214–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Tzivoni D, Gavish A, Zin D, et al. Prognostic significance of ischemic episodes in patients with previous myocardial infarction. Am J Cardiol 1988; 62:661–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Gottlieb SO, Gottlieb SH, Achuff SC, et al. Silent ischemia on Holter monitoring predicts mortality in high-risk post-infarction patients. JAMA 1988; 259:1030–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Warnes CA, Roberts WC. Sudden coronary death: relation of amount and distribution of coronary narrowing at necropsy to previous symptoms of myocardial ischemia, left ventricular scarring and heart weight. Am J Cardiol 1984; 54:65–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Hong RA, Bhandari AK, McKay CR, Au PK, Rahimtoola SH. Life threatening ventricular tachycardia and fibrillation induced by painless myocardial ischemia during exercise testing. JAMA 1987; 257:1937–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Glazier JJ, Chierchia S, Brown MJ, Maseri A. Importance of generalized defective perception of painful stimuli as a cause of silent myocardial ischemia in chronic stable angina pectoris. Am J Cardiol 1986; 58:667–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Chierchia S, Lazzari M, Freedman B, Brunelli C, Maseri A. Impairment of myocardial perfusion and function during painless myocardial ischemia. J Am Coll Cardiol 1983; 1:924–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Klein J, Chao SY, Berman DS, Rozanski A. Is’ silent’ myocardial ischemia really as severe as symptomatic ischemia? The analytical effect of patient selection biases. Circulation 1994; 89:1958–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Langer A, Freeman MR, Josse RG, Steiner G, Armstrong PW. Detection of silent myocardial ischemia in diabetes mellitus. Am J Cardiol 1991; 67:1073–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Shakespeare CF, Katritsis D, Crowther A, Cooper C, Coltart JC, Webb-Peploe MW. Differences in autonomic nerve function in patients with silent and symptomatic myocardial ischemia. Br Heart J 1994; 71:22–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Woolf CJ, Wall PD. Endogenous opioid peptides and pain mechanisms: a complex relationship. Nature 1983; 306:739–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Sheps DS, Maixner W, Hinderliter AL. Mechanisms of pain perception in patients with silent myocardial ischemia. Am Heart J 1989; 119:983–7.CrossRefGoogle Scholar
  49. 49.
    Droste C, Roskamm H. Pain perception and endogenous pain modulation in angina pectoris. In: Kellerman JJ, Braunwald E, editors. Silent myocardial ischemia: a critical appraisal. Basel: Karger; 1990. p. 42–64.Google Scholar
  50. 50.
    Van Rijn T, Rabkin SW. Effect of naloxone on exercise-induced angina pectoris: a randomized double blind crossover trial. Life Sci 1986; 38:609–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Ellestad MH, Kuan P. Naloxone and asymptomatic ischemia: failure to induce angina during exercise testing. Am J Cardiol 1984; 54:982–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Heller GV, Garber CE, Connolly MJ, et al. Plasma beta-endorphin levels in silent myocardial ischemia induced by exercise. Am J Cardiol 1987; 59:735–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Falcone C, Specchia G, Rondanelli R, et al. Correlation between beta-endorphin plasma levels and anginal symptoms in patients with coronary artery disease. J Am Coll Cardiol 1988; 11:719–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Barsky AJ, Hochstrasser B, Coles NA, Zisfein J, O’Donnell C, Eagle KA. Silent myocardial ischemia. Is the person or the event silent? JAMA 1990; 264:1132–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Wall PD. The gate control theory of pain mechanisms. A re-examination and a re-statement. Brain 1978; 101:1–18.PubMedCrossRefGoogle Scholar
  56. 56.
    Neafsey EJ, Terreberry RR, Hurley KM, Ruit KG, Frysztak RJ. Anterior cingulate cortex in rodents: connections, visceral control functions and implications for emotion. In: Vogt BA, Gabriel M, editor. Neurobiology of cingulate cortex and limbic thalamus. Boston: Birkhâuser; 1993. p. 206–23.Google Scholar
  57. 57.
    Terreberry RR, Neafsey EJ. Rat medial frontal cortex: a visceral motor region with a direct projection to the solitary nucleus. Brain Res 1983; 278:245–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Hurley KM, Herbert H, Moga MM, Saper CB. Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 1991; 308:249–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Vogt BA, Pandya DN. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 1987; 262:271–89.PubMedCrossRefGoogle Scholar
  60. 60.
    Van Hoesen GW, Morecraft RJ, Vogt BA. Connections of the monkey cingulate cortex. In: Vogt BA, Gabriel M, editor. Neurobiology of cingulate cortex and limbic thalamus. Boston: Birkhâuser; 1993:249–84.Google Scholar
  61. 61.
    Malliani A. Pathophysiology of ischemic cardiac pain. In: von Arnim T, Maseri A, editor Silent ischemia. Darmstadt: Steinkopff; 1987. p. 19–24.Google Scholar
  62. 62.
    Jones AKP, Brown WD Friston KJ, Qi LY, Frackowiak RS. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond Biol Sci 1991; 244:39–44.CrossRefGoogle Scholar
  63. 63.
    Talbot JD, Marrett S, Evans AC, Meyer E, Bushneil MC, Duncan GH. Multiple representations of pain in human cerebral cortex. Science 1991; 251:1355–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Morecraft RJ, Geula C, Mesulam MM. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 1992; 323:341–58.PubMedCrossRefGoogle Scholar
  65. 65.
    Gabriel M, Kubota Y, Sparenborg S, Straube K, Vogt BA. Effects of cingulate cortical lesions on avoidance learning and training-induced unit activity in rabbits. Exp Brain Res 1991; 86:585–600.PubMedCrossRefGoogle Scholar
  66. 66.
    Keefer CS, Resnik WH. Angina pectoris: a syndrome caused by anoxemia of the myocardium. Arch Intern Med 1928; 41:769–807.CrossRefGoogle Scholar
  67. 67.
    Ahn J, Jarmukli NF, Iranmanesh A, Russell DC. Modulation of beta-endorphin levels alters peripheral pain threshold but not anginal threshold in patients with stable angina [abstract]. Circulation 1994; 90(4 pt.2): I57.Google Scholar
  68. 68.
    Rosen SD, Paulesu E, Frackowiak RS, Camici PG. Central neural correlates of chest pain in syndrome X [abstract]. Circulation 1995; 92(Suppl 1):1651.Google Scholar
  69. 69.
    Rosen SD, Paulesu E, Tousoulis D, Foale RA, Camici PG. Role of the thalamus and cerebral cortex in the perception of cardiac symptoms [abstract]. Circulation 1997; 96(8 Suppl):1761.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Stuart D. Rosen

There are no affiliations available

Personalised recommendations