Skip to main content

The Coronary Microcirculation and Myocardial Ischemia

  • Chapter
Book cover Advanced Imaging In Coronary Artery Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 202))

  • 120 Accesses

Abstract

In normal human beings baseline myocardial energy expenditure in the anterior wall of the left ventricle, calculated from arterial and great cardiac vein substrate concentration and blood flow, amounts to 34±5 cal/min, which means roughly 2–3 times as much for the whole left ventricle. In the post- absorptive state energy is derived almost entirely from free fatty acids and 301±53 pmol/min of oxygen are required for their oxidation. If heart rate is doubled by atrial pacing from 80 to 160 beats per minute, energy expenditure increases to 64±7 cal/min and oxygen consumption to 593±71 pmol/min. These changes occur despite a fall in transmyocardial oxygen extraction from 71+3 to 64+3% from baseline to pacing tachycardia. The additional oxygen required can therefore be delivered only through an increase in myocardial blood flow which, in this particular case, is more than doubled1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camici P, Marraccini P, Marzilli M, et al. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. Am J Physiol 1989; 257:E309–17.

    PubMed  CAS  Google Scholar 

  2. De Silva R, Camici PG. Role of positron emission tomography in the investigation of human coronary circulatory function. Cardiovasc Res 1994; 28:1595–612.

    Article  PubMed  CAS  Google Scholar 

  3. Chilian WM, Eastham CL, Layne SM, Marcus ML. Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and microvascular dynamics. Prog Cardiovasc Dis 1988; 31:17–38.

    Article  PubMed  CAS  Google Scholar 

  4. Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990; 82:1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986; 251:H779–88.

    PubMed  CAS  Google Scholar 

  6. Hoffmann Jl. Transmural myocardial perfusion. Prog Cardiovasc Dis 1987; 29:429–64.

    Article  Google Scholar 

  7. Lipscomb K, Gould KL. Mechanism of the effect of coronary artery stenosis on coronary flow in the dog. Am Heart J 1975; 89:60–7.

    Article  PubMed  CAS  Google Scholar 

  8. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974; 33:87–94.

    Article  PubMed  CAS  Google Scholar 

  9. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994; 330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  10. Camici PG. Microcirculation: what is the role of calcium antagonists? Eur Heart J 1997; 18Suppl A:A51–5.

    Article  PubMed  CAS  Google Scholar 

  11. Kuo L, Davis MJ, Cannon MS, Chilian WM. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium dependent responses by L-arginine. Circ Res 1992; 70:465–76.

    Article  PubMed  CAS  Google Scholar 

  12. Zeiher AM, Drexler H, Wollschlager H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991; 84:1984–92.

    Article  PubMed  CAS  Google Scholar 

  13. Larkin SW, Clarke JG, Keogh BG, et al. Intracoronary endothelin induces myocardial ischemia by small vessel constriction in the dog. Am J Cardiol 1989; 64:956–8.

    Article  PubMed  CAS  Google Scholar 

  14. Clarke JG, Davies GJ, Kerwin R, et al. Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1987; 1:1057–9.

    Article  PubMed  CAS  Google Scholar 

  15. McFadden EP, Clarke JG, Davies GJ, Kaski JC, Haider AW, Maseri A. Effect of intracoronary serotonin on coronary vessels in patients with stable angina and patients with variant angina. N Engl J Med 1991; 324:648–54.

    Article  PubMed  CAS  Google Scholar 

  16. Chilian WM, Layne SM, Eastham CL, Marcus ML. Heterogeneous microvascular coronary alpha-adrenergic vasoconstriction. Circ Res 1989; 64:376–88.

    Article  PubMed  CAS  Google Scholar 

  17. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by cold presser test. Circulation 1988; 77:43–52.

    Article  PubMed  CAS  Google Scholar 

  18. Zeiher AM, Drexler H, Wollschlager H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic Stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989; 14:1181–90.

    Article  PubMed  CAS  Google Scholar 

  19. Vita JA, Treasure CB, Yeung AC, et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation 1992; 85:1390–7.

    Article  PubMed  CAS  Google Scholar 

  20. Murray PA, Vatner SF. Alpha-adrenoreceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 1979; 45:654–60.

    Article  PubMed  CAS  Google Scholar 

  21. Heyndrickx GR, Muylaert P, Pannier JL. Alpha-advenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 1982; 242:H805–9.

    PubMed  CAS  Google Scholar 

  22. Gwirtz PA, Overn SP, Mass HJ, Jones CE. Alpha 1-adrenergic constriction limits coronary flow and cardiac function in running dogs. Am J Physiol 1986; 250:H1117–26.

    PubMed  CAS  Google Scholar 

  23. Dai XZ, Sublett E, Lindstrom P, Schwartz JS, Homans DC, Bache RJ. Coronary flow during exercise after selective alpha1-and alpha2-adrenergic blockade. Am J Physiol 1989; 256:H1148–55.

    PubMed  CAS  Google Scholar 

  24. Duncker DJ, Van Zon NS, Crampton M, Herrlinger S, Homans DC, Bache RJ. Coronary pressure-flow relationship and exercise: contribution of heart rate, contractility and alpha 1-adrenergic tone. Am J Physiol 1994; 266:H795–810.

    PubMed  CAS  Google Scholar 

  25. Strauer BE, Schwartzkopff B, Motz W, Vogt M. Coronary vascular changes in the progression and regression of hypertensive heart disease. J Cardiovasc Pharmacol 1991; 18 Suppl 3:S20–7.

    PubMed  Google Scholar 

  26. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993; 88:993–1003.

    Article  PubMed  CAS  Google Scholar 

  27. Folkow B. ’structural factor’ in primary and secondary hypertension. Hypertension 1990; 16:89–101.

    Article  PubMed  CAS  Google Scholar 

  28. Domenech RJ, Hoffman Jl, Noble Ml, Saunders KB, Henson JR, Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res 1969; 25:581–96.

    Article  PubMed  CAS  Google Scholar 

  29. Bache RJ, Cobb FR, Greenfield JC Jr. Myocardial blood flow distribution during ischemia-induced coronary vasodilation in the unanesthetized dog. J Clin Invest 1974; 54:1462–72.

    Article  PubMed  CAS  Google Scholar 

  30. Cobb FR, Bache RJ, Greenfield JC Jr. Regional myocardial blood flow in awake dogs. J Clin Invest 1974; 53:1618–25.

    Article  PubMed  CAS  Google Scholar 

  31. Buckberg GD, Fixier DE, Archie JP, Hoffman Jl. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 1972; 30:67–81.

    Article  PubMed  CAS  Google Scholar 

  32. L’Abbate A, Marzilli M, Ballestra AM, et al. Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog’s heart. Cardiovasc Res 1980; 14:21–9.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Camici, P.G., Rimoldi, O. (1998). The Coronary Microcirculation and Myocardial Ischemia. In: Van Der Wall, E.E., Blanksma, P.K., Niemeyer, M.G., Vaalburg, W., Crijns, H.J.G.M. (eds) Advanced Imaging In Coronary Artery Disease. Developments in Cardiovascular Medicine, vol 202. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0866-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0866-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3746-4

  • Online ISBN: 978-94-007-0866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics