Advertisement

The Role of Imaging Techniques in the Diagnosis of Atherosclerosis

  • Han J. G. H. Mulder
  • Albert V. G. Bruschke
  • Martin J. Schalij
  • Ernst E. van der Wall
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 202)

Abstract

Atherosclerosis is the leading cause of morbidity and mortality in the Western world. The disease is a syndrome with a variety of clinical expressions dependent on the stage and activity of the pathological process. These expressions may vary from asymptomatic, minor plaque formation to acute myocardial infarction. An important challenge for the contemporary imaging technique is the creation of an image of the atherosclerotic lesions which are “hot”. That is the identification of lesions that are prone to rupture, thereby implying an increased risk for the individual patient for an acute cardiovascular event.

Keywords

Coronary Artery Optical Coherence Tomography Atherosclerotic Plaque Coronary Atherosclerosis Plaque Rupture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992; 326:310–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992; 326:242–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation1995; 91:2488–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Schiffrin EL. The endothelium and control of blood vessel function in health and disease. Clin Invest Med 1994; 17:602–20.PubMedGoogle Scholar
  5. 5.
    Vita JA, Treasure CB, Yeung AC, et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation. 1992; 85:1390–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res. 1985; 57:341–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992; 326:242–250, 310–318PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen RA, Shepherd JT, Vanhoutte PM. Vasodilatation mediated by the coronary endothelium in response to aggregating platelets. Bibl Cardiol 1984; 38:35–42.PubMedGoogle Scholar
  9. 9.
    Levine GN, Keaney JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med 1995; 332:512–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Crouse JR 3rd, Thompson CJ. An evaluation of methods for imaging and quantifying coronary and carotid lumen stenosis and atherosclerosis. Circulation. 1993; 87:(3 Suppl):1117–33.Google Scholar
  11. 11.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987; 316:1371–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerosis plaque rupture and thrombosis. Evolving concepts. Circulation 1990; 82:(3 Suppl):1147–59.Google Scholar
  13. 13.
    Frink RJ, Achor RW, Brown AL Jr, Kincaid OW, Brandenburg RO. Significance of calcification of the coronary arteries. Am J Cardiol 1970; 26:241–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Stanford W, Thompson BH, Weiss RM: Coronary artery calcification: clinical significance and current methods of detection. AJR Am J Roentgenol 1993; 161:1139–46.PubMedGoogle Scholar
  15. 15.
    Gnasso A, Irace C, Mattioli PL, Pujia A. Carotid intima-media thickness and coronary heart disease risk factors. Atherosclerosis 1996; 119:7–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Chambless LE, Heiss G, Folsom AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 1997; 146:483–94.Google Scholar
  17. 17.
    Visona A, Pesavento R, Lusiani L, et al. Intimai medial thickening of common carotid artery as indicator of coronary artery disease. Angiology 1996; 47:61–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kawano S, Yamagishi M, Hao H, Yutani C, Miyatake K. Wall composition in intravascular ultrasound layered appearance of human coronary artery. Heart Vessels. 1996; 11:152–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Lablanche JM, Van Belle E, McFadden E, et al. Angioscopie coronaire. Arch Mal Coeur Vaiss 1997; 90 Spec No 2:29–33.PubMedGoogle Scholar
  20. 20.
    Thieme T, Wemecke KD, Meyer R, et al. Angioscopie evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 1996; 28:1–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Waxman S, Mittleman MA, Zarich SW, et al. Angioscopie assessment of coronary lesions underlying thrombus. Am J Cardiol 1997; 79:1106–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Bauters C, Lablanche JM, McFadden EP, Hamon M, Bertrand ME. Relation of coronary angioscopie findings at coronary angioplasty to angiographic restenosis. Circulation 1995; 92:2473–79.PubMedCrossRefGoogle Scholar
  23. 23.
    Waxman S, Sassower MA, Mittleman MA, et al. Angioscopie predictors of early adverse outcome after coronary angioplasty in patients with unstable angina and non-Q-wave myocardial infarction. Circulation. 1996; 93:2106–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Mulder HJ, Schalij MJ. Endothelial (dys)function, lipid reduction and balloon angioplasty. In: Van der Wall EE, Manger Cats V, Baan J, editor: Vascular Medicine — From endothelium to myocardium. Dordrecht, Kluwer Academic Publishers; 1997, p 55–82.Google Scholar
  25. 25.
    Paulin S, von Schulthess GK, Fossel E, Krayenbuehl HP. MR imaging of the aortic root and proximal coronary arteries. AJR Am J Roentgenol 1987; 148:665–70.Google Scholar
  26. 26.
    Escaned J, Baptista J, Di Mario C, et al. Significance of automated stenosis detection during quantitative angiography. Insights gained from intracoronary ultrasound imaging. Circulation 1996; 94:966–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Mintz GS, Popma JJ, Pichard AD, et al. Limitations of angiography in the assessment of plaque distribution in coronary artery disease: a systematic study of target lesion eccentricity in 1446 lesions. Circulation 1996; 93:924–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Feld S, Ganim M, Carell ES, et al. Comparison of angioscopy, intravascular ultrasound imaging and quantitative coronary angiography in predicting clinical outcome after coronary intervention in high risk patients. J Am Coll Cardiol 1996; 28:97–105.PubMedCrossRefGoogle Scholar
  29. 29.
    Larrazet FS, Dupouy PJ, Dubois-Rande JL, Ducot B, Kvasnicka J, Geschwind HJ. Angioscopy variables predictive of early angiographic outcome after excimer laser-assisted coronary angioplasty. Am J Cardiol 1997; 79:1343–49.PubMedCrossRefGoogle Scholar
  30. 30.
    Emanuelsson H. Future challenges to coronary angioplasty: perspectives on intracoronary imaging and physiology. J Intern Med. 1995; 238:111–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Nissen SE, Tuzcu EM, DeFranco AC. Detection and quantification of atherosclerosis: the emerging role for intravascular ultrasound. In: Fuster V, editor. Syndromes of atherosclerosis. Armonk: Futura; 1996.Google Scholar
  32. 32.
    Hodgson JM, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM. Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993; 21:35–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Kimura BJ, Bhargava V, DeMaria AN. Value and limitations of intravascular ultrasound imaging in characterizing coronary atherosclerotic plaque. Am Heart J 1995; 130:386–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Baptista J, Di Mario C, Ozaki Y, et al. Impact of plaque morphology and composition on the mechanisms of lumen enlargement using intracoronary ultrasound and quantitative angiography after balloon angioplasty. Am J Cardiol 1996; 77:115–21.PubMedCrossRefGoogle Scholar
  35. 35.
    De Feyter PJ, Ozaki Y, Baptista J, et al. Ischemia-related lesion characteristics in patients with stable or unstable angina. A study with intracoronary angioscopy and ultrasound. Circulation 1995; 92:1408–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Friedrich GJ, Moes NY, Muhlberger VA, et al. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J 1994; 128:435–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Metz JA, Yock PG, Fitzgerald PJ: Intravascular ultrasound: basic interpretation. Cardiol Clin 1997; 15:1–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Takagi T, Yoshida K, Akasaka T, Hozumi T, Morioka S, Yoshikawa J. Intravascular ultrasound analysis of reduction in progression of coronary narrowing by treatment with pravastatin. Am J Cardiol 1997,79:1673–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Thompson GR, Forbat S, Underwood R. Electron-beam CT scanning for detection of coronary calcification and prediction of coronary heart disease. QJM. 1996,89:565–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Baumgart D, Schmermund A, Goerge G, et al. Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol 1997; 30:57–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Simon A, Levenson J: Early detection of subclinical atherosclerosis in asymptomatic subjects at high risk for cardiovascular disease. Clin Exp Hypertens 1993; 15:1069–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Achenbach S, Moshage W, Ropers D, Bachmann K: Comparison of vessel diameters in electron beam tomography and quantitative coronary angiography. Int J Card Imaging 1998; 14:1–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Chemoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR Am J Roentgenol 1997; 169:93–9.Google Scholar
  44. 44.
    Achenbach S, Moshage W, Bachmann K. Detection of high-grade restenosis after PTCA using contrast-enhanced electron beam CT. Circulation 1997; 96:2785–88.PubMedCrossRefGoogle Scholar
  45. 45.
    Wong ND, Teng W, Abrahamson D, et al. Noninvasive tracking of coronary atherosclerosis by electron beam computed tomography: rationale and design of the Felodipine Atherosclerosis Prevention Study (FAPS). Am J Cardiol 1995; 76:1239–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Von-Birgelen C, Erbel R, Di Mario C, et al. Three-dimensional reconstruction of coronary arteries with intravascular ultrasound. Herz 1995; 20:277–89.Google Scholar
  47. 47.
    Prause GP, DeJong SC, McKay CR, Sonka M. Towards a geometrically correct 3-D reconstruction of tortuous coronary arteries based on biplane angiography and intravscular ultrasound. Int J Card Imaging 1997; 13:451–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Brezinski ME, Tearney GJ, Weissman NJ, et al. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 1997; 77:397–403.PubMedGoogle Scholar
  49. 49.
    Brezinski ME, Tearney GJ, Bouma BE, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 1996,93:1206–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Fujimoto JG, Brezinski ME, Tearney GJ, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med 1995; 1:970–2.PubMedCrossRefGoogle Scholar
  51. 51.
    van-der-Wall EE, Vliegen HW, de Roos A, Bruschke AV. Magnetic resonance imaging in coronary artery disease. Circulation 1995; 92:2723–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Dinsmore RE: Noninvasive coronary arteriography—here at last? Circulation 1995; 91:1607–08.PubMedCrossRefGoogle Scholar
  53. 53.
    Doyle M, Pohost GM. Magnetic resonance coronary artery imaging. In: Fuster V, editor. Syndromes of atherosclerosis. Armonk: Futura; 1996.Google Scholar
  54. 54.
    Duerinckx AJ. MRI of coronary arteries. Int J Card Imaging 1997; 13:191–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Zimmermann GG, Erhart P, Schneider J, von Schulthess GK, Schmidt M, Debatin JF. Intravascular MR imaging of atherosclerotic plaque: ex vivo analysis of human femoral arteries with histologic correlation. Radiology 1997; 204:769-74.Google Scholar
  56. 56.
    Atalar E, Bottomley PA, Ocali O, et al. High resolution intravascular MRI and MRS by using a catheter receiver coil. Magn Reson Med 1996; 36:596–605.PubMedCrossRefGoogle Scholar
  57. 57.
    Ocali O, Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 1997; 37:112–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986; 315:1046–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Drexler H, Zeiher AM, Wollschlager H, Meinertz T, Just H, Bonzel T. Flow-dependent coronary artery dilatation in humans. Circulation 1989; 80:466–74.PubMedCrossRefGoogle Scholar
  60. 60.
    Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990; 82:1595–06.PubMedCrossRefGoogle Scholar
  61. 61.
    Mancini GB, Henry GC, Macaya C, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study [published erratum appears in: Circulation 1996; 94:1490]. Circulation 1996; 94:258–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Mulder JG, Schalij MJ, Visser RF, et al. Endothelium-dependent vasomotion, 3 months after PTCA in humans. A randomized, double blinded study of the effects of pravastatin on the restoration of the endothelial function. The PREFACE study [abstract]. Eur Heart J 1997; 18(abstract Suppl):16.Google Scholar
  63. 63.
    Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995,332:488–93.PubMedCrossRefGoogle Scholar
  64. 64.
    Leung WH, Lau CP, Wong CK. Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolaemic patients. Lancet 1993; 341:1496–500.PubMedCrossRefGoogle Scholar
  65. 65.
    Galjee MA, van Rossum AC, Doesburg T, Van Eenige MJ, Visser CA. Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation 1996; 93:660–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Hundley WG, Lange RA, Clarke GD, et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 1996; 93:1502–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Dendale P, Franken PR, Meusel M, van der Geest R, de Roos A. Distinction between open and occluded infarct-related arteries using contrast-enhanced magnetic resonance imaging. Am J Cardiol 1997; 80:334–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Trouard TP, Altbach Ml, Hunter GC, Eskelson CD, Gmitro AF. MRI and NMR spectroscopy of the lipids of atherosclerotic plaque in rabbits and humans. Magn Reson Med 1997; 38:19–26.PubMedCrossRefGoogle Scholar
  69. 69.
    Yuan C, Petty C, O’Brien KD, Hatsukami TS, Eary JF, Brown BG. In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids. Arterioscler Thromb Vasc Biol 1997; 17:1496–503.PubMedCrossRefGoogle Scholar
  70. 70.
    Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996; 94:932–38.PubMedCrossRefGoogle Scholar
  71. 71.
    Casscells W, Hathorn B, David M, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996; 347:1447–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Castelli W, Leaf A. Identification and assessment of cardiac risk: an overview. Cardiol Clin 1985; 3:178.Google Scholar
  73. 73.
    McNamara JJ, Molot MA, Stimple JF. Coronary artery disease in combat casualties in Vietnam. JAMA 1971; 216:1185–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Gorge G, Ge J, Haude M, et al. Intravascular ultrasound for evaluation of coronary arteries. In: Reiber JH, Van der Wall EE, editors. Cardiovascular imaging. Dordrecht: Kluwer Academic Publishers; 1996, p. 283–300.Google Scholar
  75. 75.
    Brundage BH. What is the current role of ultrafast CT in coronary imaging? In: Reiber JH, Van der Wall EE, editors. Cardiovascular imaging. Dordrecht: Kluwer Academic Publishers; 1996, p. 531–44.Google Scholar
  76. 76.
    Di Mario C, Fitzgerald PJ, Colombo A. New developments in intracoronary ultrasound, in Reiber JH, Van der Wall EE, editors. Cardiovascular imaging. Dordrecht; Kluwer Academic Publishers; 1996, p. 257–75.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Han J. G. H. Mulder
  • Albert V. G. Bruschke
  • Martin J. Schalij
  • Ernst E. van der Wall

There are no affiliations available

Personalised recommendations