Pathophysiology of Acute or Short-Term Hibernation

  • Tom J. C. Ruigrok
  • Xavier A. van Binsbergen
  • Cees J. A. van Echteld
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 202)

Abstract

Myocardial hibernation refers to a clinical state of chronic regional contractile dysfunction characterized by a reduced regional myocardial blood flow, either persistently at rest1-2 or repetitively during stress 3, that can be partially or completely restored to normal upon coronary revascularization. In hibernation, the observed reduction in function reflects preservation of viability rather than the occurrence of necrosis. Stress echocardiography using low-dose dobutamine infusion is at present the preferred initial approach for the selection of patients with hibernating or viable myocardium who would benefit from coronary revascularization 4. Additional techniques to assess viability include fluorine-18(18F) fluorodeoxyglucose positron emission tomography (FDG-PET), technetium- 99m (99mTc) sestamibi single photon emission tomography (SPECT), or thallium-201 (201TI) rest-redistribution SPECT imaging. Although the concept of chronic adaptive reduction of contractile function in response to reduction in myocardial blood flow is straightforward and simple, the mechanisms responsible for the development and maintenance of hibernation are unclear at present. This is mainly due to a large distance between the available experimental models of (acute or short-term) hibernation and the clinical scenario of (chronic or long-term) hibernation. In this chapter an experimental model of short-term hibernation will be discussed that is based on the observation that the majority of patients with hibernating myocardium has a history of an acute ischemic insult (either in the form of a transmural myocardial infarction or prolonged ischemic pain) followed by hypoperfusion5.

Keywords

Myocardial Blood Flow Ischemic Precondition Regional Myocardial Blood Flow Isolate Rabbit Heart Myocardial Hibernation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rahimtoola SH. Coronary bypass surgery for chronic angina — 1981. A perspective. Circulation 1982; 65:225–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985; 72:V123–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Vanoverschelde JL, Wijns W, Borgers M, et al. Chronic myocardial hibernation in humans. From bedside to bench. Circulation 1997; 95:1961–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Wijns W, Melin JA. Clinical imaging of chronic myocardial dysfunction. In: Heyndrickx GR, Vatner SF, Wijns W, editors. Stunning, hibernation, and preconditioning: clinical pathophysiology of myocardial ischemia. Philadelphia: Lippincott-Raven, 1997:307–29.Google Scholar
  5. 5.
    Ferrari R, Cargnoni A, Curello S, Ceconi C, Volpini M, Visioli O. Metabolic adaptation of underperfused isolated rabbit heart: an insight into molecular mechanisms underlying hibernation [abstract]. Circulation 1993; 88(4 suppl):1188.Google Scholar
  6. 6.
    Ross J. Myocardial perfusion-contraction matching: Implications for coronary heart disease and hibernation. Circulation 1991; 83:1076–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 1988; 78:729–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Pantely GA, Malone SA, Rhen WS et al. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 1990; 67:1481–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Schulz R, Guth BD, Pieper K, Martin C, Heusch G. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery. A model of short-term hibernation. Circ Res 1992; 70:1282–95.PubMedCrossRefGoogle Scholar
  10. 10.
    Mills I, Fallon JT, Wrenn D, et al. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Am J Physiol 1994; 266:H447–H57.PubMedGoogle Scholar
  11. 11.
    Liedtke AJ, Renstrom B, Nellis SH, Hall JL, Stanley WC. Mechanical and metabolic functions in pig hearts after 4 days of chronic coronary stenosis. J Am Coll Cardiol 1995; 26:815–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Canty JM Jr, Klocke FJ. Reductions in regional myocardial function at rest in conscious dogs with chronically reduced regional coronary artery pressure. Circ Res 1987; 61:II1O7–16.Google Scholar
  13. 13.
    Shen Y-T, Vatner SF. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 1995; 76:479–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Fallavollita JA, Perry BJ, Canty JM. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium: Evidence for transmural variations in chronic hibernating myocardium. Circulation 1997; 95:1900–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Heusch G, Ferrari R, Hearse DJ, Ruigrok TJC, Schulz R. ‘Myocardial hibernation’ — questions and controversies. Cardiovasc Res. In press 1997.Google Scholar
  16. 16.
    Schulz R, Post H, Sakka S, Wallbridge DR, Heusch G. Intraischemic preconditioning. Increased tolerance to sustained low-flow ischemia by a brief episode of no-flow ischemia without intermittent reperfusion. Circ Res 1995; 76:942–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Schulz R, Rose J, Heusch G. Involvement of activation of ATP-dependent potassium channels in ischemic preconditioning in swine. Am J Physiol 1994; 267:H1341–52.PubMedGoogle Scholar
  18. 18.
    Schulz R, Rose J, Post H, Heusch G. Regional short-term myocardial hibernation in swine does not involve endogenous adenosine or KATP channels. Am J Physiol 1995; 268:H2294–301.PubMedGoogle Scholar
  19. 19.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia. A delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74:1124–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferrari R, Cargnoni A, Bernocchi P, et al. Metabolic adaptation during a sequence of no-flow and low-flow ischemia. A possible trigger for hibernation. Circulation 1996; 94:2587–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Van Binsbergen XA, Van Emous JG, Ferrari R, Van Echteld CJ, Ruigrok TJ. Metabolic and functional consequences of successive no-flow and sustained low-flow ischaemia; A 31P MRS study in rat hearts. J Mol Cell Cardiol 1996; 28:2373–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrari R, Bongrazio M, Cargnoni A, et al. Heat shock protein changes in hibernation: a similarity with heart failure? J Mol Cell Cardiol 1996; 28:2383–95.PubMedCrossRefGoogle Scholar
  23. 23.
    Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88:1264–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Sun D, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC 3rd. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994; 89:793–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Koning MM, Simonis LA, DeZeeuw S, Nieukoop S, Post S, Verdouw PD. Ischaemic preconditioning by partial occlusion without intermittent reperfusion [published erratum in Cardiovasc Res 1994; 28:1736]. Cardiovasc Res 1994; 28:1146–51.Google Scholar
  26. 26.
    Walsh RS, Borges M, Thornton JD, Cohen MV, Downey JM. Hypoxia preconditions rabbit myocardium by an adenosine receptor-mediated mechanism. Can J Cardiol 1995; 11:141–6.PubMedGoogle Scholar
  27. 27.
    Ovize M, Przyklenk K, Kloner RA. Partial coronary stenosis is sufficient and complete reperfusion is mandatory for preconditioning the canine heart. Circ Res 1992; 71:1165–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Janier MF, Vanoverschelde JL, Bergmann SR. Ischemic preconditioning stimulates anaerobic glycolysis in the isolated rabbit heart. Am J Physiol 1994; 267:H1353–60.PubMedGoogle Scholar
  29. 29.
    Eberli FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS. Protective effect of increased glycolytic substrate against systolic and diastolic dysfunction and increased coronary resistance from prolonged global underperfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Circ Res 1991; 68:466–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Steenbergen C, Murphy E, Watts JA, London RE. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res 1990; 66:135–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Jeremy RW, Koretsune Y, Marban E, Becker LC. Relation between glycolysis and calcium homeostasis in postischemic myocardium. Circ Res 1992; 70:1180–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Nakamura K, Kusuoka H, Ambrosio G, Becker LC. Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation. Am J Physiol 1993; 264:H670–8.PubMedGoogle Scholar
  33. 33.
    Xu KY, Zweier JL, Becker LC. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+transport. Circ Res 1995; 77:88–97.PubMedCrossRefGoogle Scholar
  34. 34.
    Cross HR, Radda GK, Clarke K. The role of Na+7K+ ATPase activity during low flow ischemia in preventing myocardial injury: a 31P, 23Na and 87Rb NMR spectroscopic study. Magn Reson Med 1995; 34:673–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Kingsley PB, Sako EY, Yang MQ, et al. Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Am J Physiol 1991; 261:H469–78.PubMedGoogle Scholar
  36. 36.
    Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 1990; 66:913–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Asimakis GK, Inners-McBride K, Medellin G, Conti VR. Ischemic preconditioning attenuates acidosis and postischemic dysfunction in isolated rat hearts. Am J Physiol 1992; 263:H887–94.PubMedGoogle Scholar
  38. 38.
    Doenst T, Guthrie PH, Chemnitius J-M, Zech R, Taegtmeyer H. Fasting, lactate, and insulin improve ischemia tolerance in rat heart: a comparison with ischemic preconditioning. Am J Physiol 1996; 270:H1607–15.PubMedGoogle Scholar
  39. 39.
    IIIes RW, Wright JK, Inners-McBride K, Yang CJ, Tristan A. Ischemic preconditioning improves preservation with crystalloid cardioplegia. Ann Thorac Surg 1994; 58:1481–5.CrossRefGoogle Scholar
  40. 40.
    Downing SE, Chen V. Myocardial hibernation in the ischemic neonatal heart. Circ Res 1990; 66:763–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 1991; 69:1458–69.PubMedCrossRefGoogle Scholar
  42. 42.
    Vanoverschelde JL, Wijns W, Depré C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993; 87:1513–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Maes A, Flameng W, Nuyts J et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994; 90:735–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Depré C, Vanoverschelde JL, Melin JA, et al. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995; 268:H1265–75.PubMedGoogle Scholar
  45. 45.
    Borgers M. Pathologic findings in chronic hibernating myocardium. In: Heyndrickx GR, Vatner SF, Wijns W, editors. Stunning, hibernation, and preconditioning: clinical pathophysiology of myocardial ischemia. Philadelphia: Lippincott-Raven, 1997:287–306.Google Scholar
  46. 46.
    Stull JT, Mayer SE. Biochemical mechanisms of adrenergic and cholinergic regulation of myocardial contractility. In: Berne RM,Sperelakis N, Geiger SR, editors. Handbook of physiology; Section 2, The Cardiovascular System. Volume I, The heart; Bethesda, Maryland: American Physiological Society, 1979:741–74.Google Scholar
  47. 47.
    McNulty PH, Luba MC. Transient ischemia induces regional myocardial glycogen synthase activation and glycogen synthesis in vivo. Am J Physiol 1995; 268:H364–70.PubMedGoogle Scholar
  48. 48.
    McFalls EO, Baldwin DR, Marx D, Jaimes D, Ward HB. The effects of repetitive stunning on regional myocardial glucose uptake in swine, [abstract]. Circulation 1997; 96(8 Suppl):1537.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Tom J. C. Ruigrok
  • Xavier A. van Binsbergen
  • Cees J. A. van Echteld

There are no affiliations available

Personalised recommendations