Skip to main content

Parametric Interactions in Waveguides Realized on Periodically Poled Crystals

  • Chapter
Advanced Photonics with Second-Order Optically Nonlinear Processes

Part of the book series: NATO Science Series ((ASHT,volume 61))

  • 266 Accesses

Abstract

In nonlinear optics, a waveguide configuration presents the advantage of a higher power confinement and a larger number of phase matching schemes. These advantages are counterbalanced by a certain number of extra requirements and a greater technological complexity. In this paper, these issues will be addressed by a quick review of different configurations which have been experimentally tested, and, as several studies are still underway, the state of the art will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webjörn, J., Pruned, V., Russel, P., Barr, J.R.M. and Hanna, D.C. (1994) Blue light generation in bulk lithium niobate electrically poled via liquid electrod, Electron. Lett. 30, 894.

    Article  ADS  Google Scholar 

  2. Armstrong, J.A., Bloembergen, N., Ducuing, J. and Pershan, P.S. (1962) Interactions between light waves in nonlinear dielectric, Phys. Rev. 127, 1918–1939.

    Article  ADS  Google Scholar 

  3. Lim, E.J., Fejer, M.M. and Byer, R.L. (1989) Second harmonic generation of green light in periodically poled lithium niobate waveguide, Electron. Lett. 25, 174–174.

    Article  Google Scholar 

  4. Webjörn, J., Laurell, F. and Arvidsson, G. (1989) Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguideBlue light generated by frequency doubling of laser diode light in a lithium niobate waveguide, IEEE Photonics Tech. Lett. 1, 316–318.

    Google Scholar 

  5. Myers, L.E. Eckardt, R.C., Fejer, M.M., Byer, R.L. and Pierce, J.W. (1995) CW-diode pumped optical parametric oscillator in bulk periodically poled LiNbO3, Electronics Letters 31, No. 21, 1869–1870.

    Article  Google Scholar 

  6. Bosenberg, W.R., Dobshoff, A., Alexander, J.I., Myers, L.E. and Byer, R.L. (1996) Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3, Optics Letters 21(10), 713–715.

    Article  ADS  Google Scholar 

  7. Jackel, J.L., Rice, R.E. and Veslka, J.J. (1982) Proton exchange for high index waveguides in LiNbO3, Appl. Phys. Lett. 41, 607.

    Article  ADS  Google Scholar 

  8. De Micheli, M., Botineau, J., Neveu, S., Sibillot, P., Ostrowsky, D.B. and Papuchon, M. (1983) Independent control of index and profiles in proton exchanged lithium niobate guidesIndependent control of index and profiles in proton exchanged lithium niobate guides, Opt. Lett. 8, 114–115.

    Google Scholar 

  9. Boyd, J.T. (1972) J.Q.E. 8, 788.

    Article  Google Scholar 

  10. Bloembergen, N. (1980) Conservation laws in nonlinear optics, J. Opt. Soc. Am. 70(12) 1429–1436.

    Article  ADS  Google Scholar 

  11. Stegeman, G.I. and Seaton, C.T. (1985) Nonlinear integrated optics, J. Appl. Phys. 58(12), R–57–R78.

    Article  Google Scholar 

  12. Hayata, K., Sugawara, T. and Koshiba, M. (1990) Modal analysis of second harmonic electromagnetic field generated by the Cerenkov effect in optical waveguides, J. Quant. Elect. 26(1), 123–134.

    Article  ADS  Google Scholar 

  13. Yariv, A. (1975), Quantum Electronics, Wiley, New York.

    Google Scholar 

  14. Ito, H. and Inaba, H. (1978) Efficient phase-matched second harmonic generation method in four layered optical waveguide structures, Opt. Lett. 2(6), 139–141.

    Article  ADS  Google Scholar 

  15. De Micheli, M., Botineau, J., Sibillot, P., Neveu, S., Ostrowsky, D.B. and Papuchon, M. (1983) Extension of second harmonic phase-matching range in lithium niobate guides, Opt. Lett. 8, 116–118.

    Article  ADS  Google Scholar 

  16. Schmidt, R.V. and Kaminov, I.P. (1974) Metal diffused optical waveguides in LiNbO3, Appl. Phys. Lett. 25(8), 458.

    Article  ADS  Google Scholar 

  17. Sohler, W. p.449 and Suche, H. p.480 (1984) New Directions in Guided Waves and Coherent Optics, D.B. Ostrowsky and E. Spitz (eds), Martinus Nijhoff Ed., The Hague.

    Google Scholar 

  18. Hermann, H. and Sohler, W. (1988) Difference-frequency generation of tunable, coherent mid-infrared radiation in Ti:LiNbO3 channel waveguides, J. Opt. Soc. Am. B. 5(2), 267–277.

    Article  ADS  Google Scholar 

  19. He, Q., De Micheli, M.P., Ostrowsky, D.B., Lallier, E., Pocholle, J.P., Papuchon, M., Armani, F., Delacourt, D., Grezes-Besset, C. and Pelletier, E. (1992) Self-frequency-doubled high δn proton exchanged Nd:LiNbO3 waveguides laser, Opt. Commun. 89(1), 54–58.

    Article  ADS  Google Scholar 

  20. Li, M.J., De Micheli, M.P. and Ostrowsky, D.B. (1990) Cerenkov configuration second harmonic generation in proton exchanged lithium niobate waveguides, J. Quant. Elect. 26(8), 1384–1393.

    Article  ADS  Google Scholar 

  21. Thyagarajan, K., Mahalakshmi, V. and Shenoy, M.R. (1993) Performance comparison of different configuration for second harmonic generation in planar waveguides, Int. Journal of Optoelectronics 8(4) 319–332.

    Google Scholar 

  22. Taniuchi, T. and Yamanoto, K. Mignaturized light sources of coherent blue radiation, Proc CLEO’ 87, 198.

    Google Scholar 

  23. He, Q., De Micheli, M.P., Ostrowsky, D.B., Lallier, E., Pocholle, J.P., Papuchon, M., Armani, F., Delacourt, D., Grezes-Besset, C. and Pelletier, E. Self-frequency-doubled high δη proton exchanged Nd:LiNb03 waveguide lasers, Compact Blue-Green Lasers’ 92, Santa Fé, New Mexico, USA.

    Google Scholar 

  24. Bierlin, J.D., Roelofs, M.G., Brown, J.B., Tohma, T. and Okamoto, S. KTiOPO4 blue laser using segmented waveguide structures, Compact Blue-Green Lasers’ 94, PDP 7.

    Google Scholar 

  25. Yamada, M., Nada, N., Saitoh, M. and Watanabe, K. (1993) First order quasi-phase matched LiNbO3 waveguides periodically poled applying an external field for efficient blue second harmonic generation, Appl. Phys. Lett. 60, 435–436.

    Article  ADS  Google Scholar 

  26. Fujimura, M. et al (1992) Electron Lett. 28, 1868–1869.

    Article  ADS  Google Scholar 

  27. Delacourt, D., Armani, F. and Papuchon, M. (1994) Second harmonic generation efficiency in periodically poled LiNbO3 waveguides, J. Quant. Elect. 30(4), 1090–1099.

    Article  ADS  Google Scholar 

  28. Machio, S., Nitanda, F., Ito, K. and Sato, M. (1992) Fabrication of periodically inverted domain structures in LiTa03 and LiNbO3 using proton exchange, Appl. Phys. Lett. 61, (26), 3077–3079.

    Article  ADS  Google Scholar 

  29. Gupta, M.C., Risk, W.P., Nutt, A.C.G. and Lau, S.D. (1993) Domain inversion in KTiOPO4 using electron beam scanning, Appl. Phys. Lett. 63(9), 1167–1169.

    Article  ADS  Google Scholar 

  30. Myers, L.E. (1995) PhD dissertation (G.L. n° 5396, Stanford University).

    Google Scholar 

  31. Chen, Q. and Risk, W.P. (1994) Periodic poling of KT1OPO4 using an applied electric field, Electron. Lett. 30(18), 1516–1517.

    Article  Google Scholar 

  32. Baldi, P., Nouh, S., De Micheli, M.P., Ostrowsky, D.B., Delacourt, D., Banti, X. and Papuchon, M. (1993) Efficient quasi phase-matched generation of parametric fluorescence in room temperature lithium niobate waveguides, Elect. Lett. 29(17), 1539.

    Article  Google Scholar 

  33. Baldi, P., Aschieri, P., Nouh, S., De Micheli, M. and Ostrowsky, D.B.; Delacourt, D. and Papuchon M. (1995) Modelling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides, J. Quant. Elect. 31(6), 997–1008.

    Article  ADS  Google Scholar 

  34. Mueller, C.T. and Garmire, E. (1984) Photorefractive effect in LiNbO3 directional couplers, App. Opt. 23, 4348–4351.

    Article  ADS  Google Scholar 

  35. Fejer, M., this book.

    Google Scholar 

  36. Baron, C, Cheng, H. and Gupta, M.C. (1996) Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals, Appl. Phys. Lett. 68(4), 22.

    Article  Google Scholar 

  37. Aboud, I., De Micheli, M. and Ostrowsky, D.B.; Smith, P.G.R. and Hanna, D. Etude de l’influence de la fabrication des guides d’ondes sur l’inversion de la polarisation dans le niobate de lithium, JNOG’97 — Saine Etienne, France.

    Google Scholar 

  38. Korkishko, Yu. N., Fedorov, V.A, De Mieheli, M., El Hadi, K., Baldi, P. and Leycuras, A (1996) Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate, Applied Optics, 35(36), 7056–7060.

    Article  ADS  Google Scholar 

  39. White, J.M. and Heidrich, P.F. (1976) Optical waveguide refractive index profiles determined from the measurement of mode indices: a simple analysis, Appl. Opt. 15, 151.

    Article  ADS  Google Scholar 

  40. Fedorov, V.A, Ganshin, V.A and Korkishko, Yu. N. (1993) New method of double-crystal X-ray diffractometric determination of the strained state in surface-layer structures, Phys. Status Solidi (a) 135, 493.

    Article  ADS  Google Scholar 

  41. El Hadi, K., Baldi, P., Nouh, S., De Mieheli, M.P., Leycuras, A, Fedorov, V.A. and Korkishko, Yu. N. (1995) Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLil-xTaO3, Opt. Lett. 20(16), 1698–1700.

    Article  ADS  Google Scholar 

  42. Chen, S., De Micheli, M.P., Baldi, P., Ostrowsky, D.B., Leycuras, A, Tartarini, G. and Bassi, P. (1994) Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters, J. Light Tech. 12(5), 862–871.

    Article  Google Scholar 

  43. Chen, S. (1992) PhD dissertation, Nice.

    Google Scholar 

  44. Bortz, M.L., Eyres, L.A. and Fejer, M.M. Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNb03 waveguides, Appl. Phys. Lett. 62, 2012, 2014.

    Google Scholar 

  45. Cao, X., Srivastava, R., Ramaswamy, R.V. and Natour, J. (1993) Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3, Photon. Technol Lett. 3, 25–27.

    Article  ADS  Google Scholar 

  46. Laurell, F., Roelofs, M.G. and Hsiung, H. (1992) Loss of optical nonlinearity in proton-exchanged LiNbOa waveguides, Appl. Phys. Lett. 60, 301–303.

    Article  ADS  Google Scholar 

  47. El Hadi, K., Sundheimer, M., Aschieri, P., Baldi, P., De Mieheli, M.P. and Ostrowsky, D.B.; Laurell, F. (1997) Quasi-phase-matched parametric interactions in proton exchanged lithium niobate waveguides, J. Opt. Soc. Am. B 14(11), 3197–3203.

    Article  ADS  Google Scholar 

  48. Ahlfeldt, H. (1994) Nonlinear optical properties of proton-exchanged waveguides inz-cut LiTaO3, J. Appl. Phys. 76(6), 3255–3260.

    Article  ADS  Google Scholar 

  49. Li, M.J., De Mieheli, M., Ostrowsky, D.B. and Papuchon, M. (1987) Fabrication et caracterisation des guides PE présentant une faible variation d’indice et une excellente qualité optique, J. Optics (Paris) 18(3) 139–144.

    Article  ADS  Google Scholar 

  50. Nassau, K., Levinstein, H.J. and Lolcano (1966) Ferroelectric lithium niobate 1: Growth, domain structure, dislocations and etching, J. Phys. Chem. Solids 27, 983–988.

    Article  ADS  Google Scholar 

  51. Fejer, M., this book.

    Google Scholar 

  52. Baldi, P., Nouh, S., De Mieheli, M., Ostrowsky, D.B., Delacourt, D., Banti, X. and Papuchon, M. (1993) Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides, Electron. Lett. 29(17), 1539.

    Article  Google Scholar 

  53. Baldi, P., Aschieri, P., Nouh, S., De Mieheli, M., Ostrowsky, D.B., Delacourt, D. and Papuchon, M. (1995) Modelling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides, IEEE J. of Quant. Elec. 31(6) 997–1008.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Micheli, M.P., Baldi, P., Ostrowsky, D.B. (1999). Parametric Interactions in Waveguides Realized on Periodically Poled Crystals. In: Boardman, A.D., Pavlov, L., Tanev, S. (eds) Advanced Photonics with Second-Order Optically Nonlinear Processes. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0850-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0850-1_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5316-4

  • Online ISBN: 978-94-007-0850-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics