Frequency Conversion with Semiconductor Heterostructures

  • V. Berger
Part of the NATO Science Series book series (ASHT, volume 61)

Abstract

In this lecture different aspects of frequency conversion in semiconductor heterostructures are reviewed. Thanks to the very high degree of control of growth and technology of thin layers of semiconductors, both electronic wavefunction and optical mode properties can be tailored, through band gap engineering and refractive index engineering. These two aspects lead to the possibility of optimization of nonlinear susceptibilities on the one hand, and nonlinear phase matching on the other hand, which are the two most important parameters for nonlinear frequency conversion.

Keywords

Harmonic Generation Phase Match Interband Transition Frequency Conversion Difference Frequency Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a non linear dielectric,” Phys. Rev. 127, 1918–1939 (1962).ADSCrossRefGoogle Scholar
  2. 2.
    M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today May 1994, 25–32 (1994).CrossRefGoogle Scholar
  3. 3.
    A. Yariv, Quantum electronics (John Wiley & sons, 1989).Google Scholar
  4. 4.
    G. Bastard, Wave mechanics applied to semiconductor heterostructures (Les Editions de Physique CNRS, 1988).Google Scholar
  5. 5.
    C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, 1991).Google Scholar
  6. 6.
    C. Weisbuch, “The Future of Physics of Heterostructures: A Glance Into the Crystal (Quantum) Ball,” Physica Scripta T68, 102–112 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    F. Capasso, Science 235, 172 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    F. Capasso, J. Faist, and C. Sirtori, “Mesoscopic phenomena in semiconductor nanostructures by quantum design,” J. of Math. Phys. 37, 4775–4792 (1996).ADSMATHCrossRefGoogle Scholar
  9. 9.
    B. F. Levine, “Quantum Well Infrared Photodetectors,” J. of Appl. Phys. 74, R1–R81 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    Microcavities and Photonic Band Gaps: Physics and Applications, J. Rarity and C. Weisbuch, eds., (Kluwer Academic Publishers, Dordrecht, 1996).Google Scholar
  12. 12.
    T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).Google Scholar
  13. 13.
    J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-Cavity Surface-Emitting Lasers: Design, Growth, Fabrication, Characterization,” IEEE J. of Quant. Elec. 27, 1332 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher, “GaAs/AlGaAs microdisks lasers,” Appl. Phys. Lett. 64, 1911 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    J. M. Gerard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    J. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Band-Gap Microcavities in Optical Waveguides,” Nature, accepted for publication (1997).Google Scholar
  19. 19.
    D. Labilloy, H. Benisty, C. Weisbuch, V. Bardinal, T. Krauss, R. Houdre, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflexion and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths,” Phys. Rev. Lett., submitted for publication (1997).Google Scholar
  20. 20.
    C. C. Cheng, A. Sherer, V. Arbet-Engels, and E. Yablonovitch, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sei. Technol. B 14, 4110 (1996).Google Scholar
  21. 21.
    V. Berger, “From photonic band gaps to refractive index engineering,” Optical Materials, to be published (1997).Google Scholar
  22. 22.
    N. Bloembergen, Nonlinear Optics (Benjamin, 1977).Google Scholar
  23. 23.
    Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).Google Scholar
  24. 24.
    E. Rosencher, B. Vinter, and B. Levine, Intersubband Transitions in Quantum Wells (Plenum, New York, 1992).CrossRefGoogle Scholar
  25. 25.
    H. C. Liu, B. F. Levine, and J. Y. Andersson, Quantum Well Intersubband Transition Physics and Devices (Plenum, Dordrecht, 1994).CrossRefGoogle Scholar
  26. 26.
    E. Rosencher and P. Bois, “Model system for optical nonlinearities: Asymmetric quantum wells,” Phys. Rev. B 44, 11315 (1991).ADSGoogle Scholar
  27. 27.
    F. Capasso, C. Sirtori, and A. Y. Cho, “Quantum well quasimolecules with nonlinear optical properties and new heterostructures with bound states in the continuum,” Optoelectronics. Devices and Technology 8, 479 (1993).Google Scholar
  28. 28.
    J. N. Heyman, K. Craig, B. Galdrikian, M. S. Sherwin, K. Campman, P. F. Hopkins, S. Fafard, and A. C. Gossard, “Resonant harmonic generation and dynamic screening in a double quantum well,” Phys. Rev. Lett. 72, 2183 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    E. Rosencher and B. Vinter, Optoélectronique (Masson, 1997).Google Scholar
  30. 30.
    V. Berger, P. Bois, and E. Rosencher, “Comment on surface emitting second harmonic generator by intersubband transition in asymmetric quantum wells with slab waveguide (Appl. Phys. Lett. 62, 1502 (1993)),” Appl. Phys. Lett. 64, 800 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    S. Li and J. Khurgin, “Second order nonlinear optical susceptibility in p-doped asymmetric quantum wells quantum wells,” Appl. Phys. Lett. 62, 1727 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    X. Qu and H. Ruda, “Structure dependence of second harmonic generation in asymmetric quantum well structures,” IEEE J. of Quant. Electron. 31, 228 (1995).ADSCrossRefGoogle Scholar
  33. 33.
    M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. QE-19, 791 (1983).ADSCrossRefGoogle Scholar
  34. 34.
    L. C. West and S. J. Eglash, “First observation of an extremely large dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” App. Phys. Lett. 52, 697 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    J. Khurgin, “Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures,” In Quantum Wells for Optics and Optoelectronics, (Washington DC, 1989).Google Scholar
  37. 37.
    J. Khurgin, “Second order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures,” J. of Opt. Soc. Am. B 6, 1673 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    Z. Ikonic, V. Milanovic, and D. Tjapkin, “Resonant second harmonic generation by a semiconductor quantum wells in electric field,” IEEE J. of Quant. Elec. 25, 54 (1989).ADSCrossRefGoogle Scholar
  39. 39.
    M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris, “Observation of extremely large quadratic susceptibility at 9.6 — 10.8 µm. in electric-field-biased quantum wells,” Phys. Rev. Lett. 62, 1041 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersubband transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25, 1063 (1989).CrossRefGoogle Scholar
  41. 41.
    P. Boucaud, F. H. Julien, D. D. Yang, J. M. Lourtioz, E. Rosencher, P. Bois, and J. Nagle, “Detailed analysis of second harmonic generation near 10.6 µ in GaAs/AlGaAs asymmetric quantum wells,” App. Phys. Lett. 57, 215 (1990).ADSCrossRefGoogle Scholar
  42. 42.
    P. Boucaud, F. H. Julien, D. D. Yang, J. M. Lourtioz, E. Rosencher, and P. Bois, “Saturation of the second harmonic generation in GaAs/AlGaAs asymmetric quantum wells,” Opt.. Lett. 16, 199 (1991).ADSCrossRefGoogle Scholar
  43. 43.
    C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Observation of large second order susceptibility via intersubband transitions at λ = 10µm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59, 2302 (1991).ADSCrossRefGoogle Scholar
  44. 44.
    C. Sirtori, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Resonant stark tuning of second-order susceptibility in coupled quantum wells,” Appl. Phys. Lett. 60, 151 (1992).ADSCrossRefGoogle Scholar
  45. 45.
    F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE Electron Device Lett. 30, 1313 (1994).CrossRefGoogle Scholar
  46. 46.
    C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, Triply Resonant, Third-Order Nonlinear Susceptibility χ3w(3) in Coupled Quantum wells,” Phys. Rev. Lett. 68, 1010 (1992).ADSCrossRefGoogle Scholar
  47. 47.
    H. C. Chui, E. L. Martinet, G. L. Woods, M. M. Fejer, J. S. Harris, C. A. Rella, B. I. Richman, and H. A. Schwettman, “Doubly resonant second harmonic generation of 2.0µp? light in coupled InGaAs/AlAs quantum wells,” Appl. Phys. Lett. 64, 3365 (1994).ADSCrossRefGoogle Scholar
  48. 48.
    E. Martinet, H. C. Chui, G. L. Woods, M. M. Fejer, J. S. Harris, C. A. Rella, B. A. Richman, and H. A. Schwettman, “Short wavelength (5.36-1.85µm) nonlinear spectroscopy of coupled InGaAs/AlAs intersubband quantum wells,” Appl. Phys. Lett. 65, 2630 (1994).ADSCrossRefGoogle Scholar
  49. 49.
    W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second harmonic generation in GaAs/AlGaAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376 (1993).ADSCrossRefGoogle Scholar
  50. 50.
    C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65, 445 (1994).ADSCrossRefGoogle Scholar
  51. 51.
    H. C. Liu, E. Costard, E. Rosencher, and J. Nagle, “Sum frequency generation by intersubband transition in step quantum wells,” IEEE J. of Quant. Electr. 31, 1659 (1995).ADSCrossRefGoogle Scholar
  52. 52.
    H. C. Chui, G. L. Woods, M. M. Fejer, E. L. Martinet, and J. S. Harris, “Tunable mid-infrared generation by difference frequency mixing of diode laser wavelengths in intersubband InGaAs/AlAs quantum wells,” Appl. Phys. Lett. 66, 265 (1995).ADSCrossRefGoogle Scholar
  53. 53.
    H. C. K. Chui, Ph.D. thesis, Stanford University, 1994.Google Scholar
  54. 54.
    S. J. B. Yoo, Ph.D. thesis, Standford University, 1991.Google Scholar
  55. 55.
    E. Rosencher, “Two photon optical nonlinearities in a resonant quantum well system,” J. of Appl. Phys. 73, 1909 (1992).ADSCrossRefGoogle Scholar
  56. 56.
    G. Almogy and A. Yariv, “Second harmonic generation in absorptive media,” Optics Lett. 19, 1828 (1994).ADSCrossRefGoogle Scholar
  57. 57.
    J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Intersubband second harmonic generation with voltage controlled phase matching,” Appl. Phys. Lett. 67, 608 (1995).ADSCrossRefGoogle Scholar
  58. 58.
    J. R. Meyer, C. A. Hoffman, F. J. Bartoli, E. R. Youngdale, and L. R. Ram-Mohan, “Momentum space reservoir for enhancement of intersubband second harmonic generation,” IEEE J. of Quant. Electron. 31, 706 (1995).ADSCrossRefGoogle Scholar
  59. 59.
    I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Optimized second-harmonic generation in asymmetric double quantum wells,” IEEE J. of Quant. Electr. 32, 1334 (1996).ADSCrossRefGoogle Scholar
  60. 60.
    S. J. ?. ???, ?. ?. Fejer, and R. L. ?. ans S. J. Harris, “Second order susceptibility in asymmetric quantum wells and its control by proton bombardment,” Appl. Phys. Lett. 58, 1724 (1991).ADSCrossRefGoogle Scholar
  61. 61.
    S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609 (1996).ADSCrossRefGoogle Scholar
  62. 62.
    K. Vodopyanov, Appl. Phys. Lett., submitted for publication (1998).Google Scholar
  63. 63.
    G. L. Woods, Ph.D. thesis, Stanford University, 1997.Google Scholar
  64. 64.
    G. Almogy, M. Segev, and A. Yariv, “Intersubband transitions induced phase matching,” Optics Lett. 19, 1192 (1994).ADSCrossRefGoogle Scholar
  65. 65.
    E. B. Dupont, D. Delacourt, and M. Papuchon, “Mid-infrared Phase Modulation via Stark Effect on Intersubband Transitions in GaAs/GaAlAs Quantum Wells,” IEEE J. Quant. Electron. 29, 2313 (1993).ADSCrossRefGoogle Scholar
  66. 66.
    V. Berger, E. Dupont, D. Delacourt, B. Vinter, N. Vodjdani, and M. Papuchon, “Triple Quantum Well Electron Transfer Infrared Modulator,” Appl. Phys. Lett. 61, 2072 (1992).ADSCrossRefGoogle Scholar
  67. 67.
    E. B. Dupont, D. Delacourt, V. Berger, N. Vodjdani, and M. Papuchon, “Phase and Amplitude Modulation Based on Intersubband Transitions in Electron Transfer Double Quantum Wells.,” Appl. Phys. Lett. 62, 1907 (1993).ADSCrossRefGoogle Scholar
  68. 68.
    V. Berger, N. Vodjdani, D. Delacourt, and J. Schnell, “Room-temperature quantum well infrared modulator using a Schottky diode,” Appl. Phys. Lett. 68, 1904 (1996).ADSCrossRefGoogle Scholar
  69. 69.
    V. Berger, N. Vodjdani, B. Vinter, E. Costard, and E. Böckenhoff, “Optically induced intersubband absorption in biased double quantum wells.,” Appl. Phys. Lett. 60, 1869–1871 (1992).ADSCrossRefGoogle Scholar
  70. 70.
    J. Khurgin, “Large-scale quantum well domain structures,” J. Appl. Phys. 64, 5026–5029 (1988).ADSCrossRefGoogle Scholar
  71. 71.
    S. Janz, F. Chatenoud, and R. Normandin, “Quasi phase matched second harmonic generation from asymmetric coupled quantum wells,” Optics Letters 19, 622 (1994).ADSCrossRefGoogle Scholar
  72. 72.
    X. Qu, H. Ruda, S. Janz, and A. J. S. Thorpe, “Enhancement of second harmonic generation at 1.06µm using a quasi phase matched AlGaAs/GaAs asymmetric quantum well structure,” Appl. Phys. Lett. 65, 3176 (1994).ADSCrossRefGoogle Scholar
  73. 73.
    J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures.,” Phys. Rev. B 38, 4056–4066 (1988).ADSCrossRefGoogle Scholar
  74. 74.
    P. J. Harshman and S. Wang, “Asymmetric AlGaAs quantum wells for second-harmonic generation and quasiphase matching of visible light in surface emitting waveguides,” Appl. Phys. Lett. 60, 1277–1279 (1992).ADSCrossRefGoogle Scholar
  75. 75.
    D. C. Hutchings and J. M. Arnold, “Determination of second order nonlinear coefficients in semiconductors using pseudo spin equations for three level systems,” Phys. Rev. B 56, 4056 (1997).ADSCrossRefGoogle Scholar
  76. 76.
    A. Shimizu, “Optical Nonlinearity induced by giant dipole moment of Wannier excitons,” Phys. Rev. Lett. 61, 613 (1988).ADSCrossRefGoogle Scholar
  77. 77.
    L. Tsang and S. L. Chuang, “Exciton effects on second-order nonlinear susceptibility in a quantum well with an applied electric field,” Phys. Rev. B 42, 5229 (1990).ADSCrossRefGoogle Scholar
  78. 78.
    R. Atanasov, F. Bassani, and V. M. Agranovich, “Second order nonlinear susceptibility of asymmetric quantum wells,” Phys. Rev. B 50, 7809 (1994).ADSCrossRefGoogle Scholar
  79. 79.
    H. Kuwatsuka and H. Ishikawa, “Calculation of the second order optical order optical susceptibility in biased AlxGa1-xAs quantum wells,” Phys. Rev. B 50, 5323 (1994).ADSCrossRefGoogle Scholar
  80. 80.
    Y. L. Xie, Z. H. Chen, D. F. Cui, S. H. Pan, D. Q. Deng, and Y. L. Zhou, “Optical second-order susceptibility of GaAs/AlxGal-xAs asymmetric coupled-quantum-well structures in the exciton region,” Phys. Rev. B 43, 12477–12479 (1991).ADSCrossRefGoogle Scholar
  81. 81.
    V. Pellegrini, A. Parlangeli, ?. Borger, R. D. Atanasov, F. Beltram, L. Vanzetti, and A. Franciosi, “Interband second harmonic generation in ZnCdSe/ZnSe strained quantum wells,” Phys. Rev. B 52, 5527 (1995).ADSCrossRefGoogle Scholar
  82. 82.
    A. Fiore, Y. Beaulieu, S. Janz, J. P. McCaffrey, Z. R. Wasilewski, and D. X. Xu, “Quasiphase matched surface emitting second harmonic generation in periodically reversed asymmetric GaAs/AlGaAs quantum well waveguide,” Appl. Phys. Lett. 70, 2655 (1997).ADSCrossRefGoogle Scholar
  83. 83.
    J. Khurgin, “Second-order susceptibility of asymmetric coupled quantum-well structures.,” Appl. Phys. Lett. 51, 2100 (1987).ADSCrossRefGoogle Scholar
  84. 84.
    L. Tsang, S. L. Chuang, and S. M. Lee, “Second-order nonlinear susceptibility of a quantum well with an applied electric field,” Phys. Rev. B 41, 5942 (1990).ADSCrossRefGoogle Scholar
  85. 85.
    A. Fiore, E. Rosencher, B. Vinter, D. Weill, and V. Berger, “Second order optical susceptibilty of biased quantum wells in the interband regime,” Phys. Rev. B 51, 13192 (1995).ADSCrossRefGoogle Scholar
  86. 86.
    A. Fiore, E. Rosencher, V. Berger, and J. Nagle, “Electric field induced interband second harmonic generation in GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 67, 3765 (1995).ADSCrossRefGoogle Scholar
  87. 87.
    A. Fiore, Ph.D. thesis, Université d’Orsay, 1997.Google Scholar
  88. 88.
    F. Bogani, S. Cioncolini, E. Lugagne-Delpon, P. Roussignol, P. Voisin, and J. P. Andre, “Resonant second harmonic generation in type II heterostructures of InP/Al0.48Ino.52As,” Phys. Rev. B 50, 4554 (1994).ADSCrossRefGoogle Scholar
  89. 89.
    S. Scandolo, A. Baldereschi, and F. Capasso, “Interband near-infrared second-harmonic generation with very large |χ(2)(2w)| in AlSb/GaSb-InAsSb/AlSb asym-metric quantum wells,” Appl. Phys. Lett. 62, 3138 (1993).ADSCrossRefGoogle Scholar
  90. 90.
    X. Qu, D. J. Bottomley, H. Ruda, and A. J. S. Thorpe, “Second harmonic generation from a AlGaAs/GaAs asymmetric quantum well structure,” Phys. Rev. B 50, 5703 (1994).ADSCrossRefGoogle Scholar
  91. 91.
    R. Normandin and G. I. Stegeman, 36, 253 (1980).Google Scholar
  92. 92.
    D. Vakhshoori and S. Wang, Appl. Phys. Lett. 53, 347 (1988).ADSCrossRefGoogle Scholar
  93. 93.
    A. Fiore, private communication.Google Scholar
  94. 94.
    A. Bonvalet, J. Nagle, V. Berger, A. Migus, J. L. Martin, and M. Joffre, “Femtosecond infrared emission resulting from coherent charge oscillations in quantum wells,” Phys. Rev. Lett. 76, 4392 (1996).ADSCrossRefGoogle Scholar
  95. 95.
    H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. K. hler, “Coherent Submillimeter-Wave Emission from Charge Oscillations in a Double-Well Potentiel,” Phys. Rev. Lett. 68, 2216–2219 (1992).ADSCrossRefGoogle Scholar
  96. 96.
    P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer, “Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy holes excitons,” Phys. Rev. Lett. 69, 3800 (1992).ADSCrossRefGoogle Scholar
  97. 97.
    A. Shimizu, M. Kuwata-Gonokami, and H. Sakaki, “Enhanced second-order optical nonlinearity using inter-and intra-band transitions in low dimensional semiconductors,” Appl. Phys. Lett. 61, 399 (1992).ADSCrossRefGoogle Scholar
  98. 98.
    X. Qu and H. Ruda, “Microwave and millimeter wave generation using nonlinear optical mixing in asymmetric quantum wells,” J. of Appl. Phys. 75, 54 (1994).ADSCrossRefGoogle Scholar
  99. 99.
    A. Bonvalet, Ph.D. thesis, Ecole polytechnique, 1997.Google Scholar
  100. 100.
    M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. of Quant. Elec. 28, 2631 (1992).ADSCrossRefGoogle Scholar
  101. 101.
    D. E. Thomson, J. D. McMullen, and D. B. Anderson, “Second-Harmonic Generation in GaAs Stack of Plates using High Power CO2 Laser Radiation,” Appl. Phys. Lett. 29, 113–115 (1976).ADSCrossRefGoogle Scholar
  102. 102.
    M. S. Ünlü, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995).ADSCrossRefGoogle Scholar
  103. 103.
    N. Hunt and E. F. Schubert, “High efficiency resonant cavity LED’s,” In Microcav-ities and Photonic bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, eds., (Kluwer Academic Publishers, Dordrecht, 1996).Google Scholar
  104. 104.
    V. Berger, X. Marcadet, and J. Nagle, “Doubly resonant frequency conversion processes in semiconductor microcavities,” Pure and Applied Optics, to be published (1997).Google Scholar
  105. 105.
    A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. of Quant. Electron. 2, 109–124 (1966).ADSCrossRefGoogle Scholar
  106. 106.
    R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. of Quant. Electron. 6, 215–223 (1970).ADSCrossRefGoogle Scholar
  107. 107.
    V. Berger, “Second-harmonic generation in monolithic cavities,” J. of Opt. Soc. Am. B 14, 1351 (1997).ADSCrossRefGoogle Scholar
  108. 108.
    D. J. Lovering, G. Fino, C. Simonneau, R. Kuszelewicz, R. Azoulay, and J. A. Levenson, “Optimisation of dual-wavelength Bragg mirrors,” Electron. Lett. 32, 1782 (1996).CrossRefGoogle Scholar
  109. 109.
    C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidakovic, D. J. Lovering, and J. A. Levenson, “Second harmonic generation in a doubly-resonant semiconductor microcavity,” submitted for publication (1997).Google Scholar
  110. 110.
    L. A. Gordon, “Diffusion-bonded stacked GaAs for quasi-phase matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).CrossRefGoogle Scholar
  111. 111.
    K. Yang and L. J. Schowalter, Appl. Phys. Lett. 60, 1851 (1991). au1]12._X. Marcadet, J. Olivier, and J. Nagle, “Stability of the step distribution and MBE growth mechanisms on vicinal GaAs(-l-l-l) substrates,” Appl. Surf. Sci., to be published (1997).ADSCrossRefGoogle Scholar
  112. 113.
    A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear material,” Nature (1997).Google Scholar
  113. 114.
    M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1980).Google Scholar
  114. 115.
    P. Yeh, Optical Waves in Layered media (John Wiley & Sons, New York, 1988).Google Scholar
  115. 116.
    J. V. der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26, 60 (1975).ADSCrossRefGoogle Scholar
  116. 117.
    J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143 (1997).ADSCrossRefGoogle Scholar
  117. 118.
    J. M. Dallesasse, J. N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolysation Oxidation of AlGaAs-AlAs-GaAs Quantum Well Heterostructures and Superlattices,” Appl. Phys. Lett. 57, 2844 (1990).ADSCrossRefGoogle Scholar
  118. 119.
    D. L. Huffaker, D. G. Deppe, and K. Kumar, “Native oxide defined ring contact for low-threshold vertical cavity lasers,” Appl. Phys. Lett. 65, 97 (1994).ADSCrossRefGoogle Scholar
  119. 120.
    M. H. MacDougal, H. Zao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-Bandwidth Distributed Bragg Reflectors Using Oxide/GaAs Multilayers,” Electr. Lett. 30, 1147 (1994).CrossRefGoogle Scholar
  120. 121.
    A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-IR difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett., to be published (1997).Google Scholar
  121. 122.
    P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2 — 5.6 microns tunable source by frequency conversion in a GaAs based waveguide,” Optics Lett. (1998).Google Scholar
  122. 123.
    A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587 (1997).ADSCrossRefGoogle Scholar
  123. 124.
    A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ = 1.06µm in GaAs based waveguides using birefringence phase matching,” Appl. Phys. Lett., submitted for publication (1998).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • V. Berger
    • 1
  1. 1.THOMSON CSF Laboratoire Central de RecherchesOrsayFrance

Personalised recommendations