The N-Soliton Interactions, Complex Toda Chain and Stable Propagation of NLS Soliton Trains

  • V. S. Gerdjikov
  • E. G. Evstatiev
  • D. J. Kaup
  • G. L. Diankov
  • I. M. Uzunov
Part of the NATO Science Series book series (ASHT, volume 61)


One of the important problems in optical fiber soliton communication is to achieve as high of a bit rate as possible. In order to do this, one needs to be able to pack the solitons into as short of a space as possible. However, if the solitons are too close together, then their mutual interactions can cause them to collide and/or separate, thereby corrupting the signal. The current solution of this problem is simply to require each soliton to be sufficiently far apart from all others (usually 6 or so soliton widths) so that such interactions can be totally neglected. However, at the same time, it was predicted [1, 2] and experimentally confirmed [3] that for certain values of relative soliton parameters, this separation can be reduced, and at the same time, still maintain signal integrity. Our purpose is to analytically and numerically detail the soliton parameter regime, inside of which, signal integrity can be maintained. In particular, we are interested to determine how the inter-soliton interaction can be used for stabilizing a soliton train.


Asymptotic Regime Nonlinear Schrodinger Equation Soliton Pulse Soliton Propagation Soliton Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Desem, C., Chu, P. L. (1992) Soliton-soliton Interactions, In Optical Solitons — Theory and Experiment: Taylor, J. R. Ed., chapter 5, Cambridge University Press, Cambridge, p. 127.Google Scholar
  2. 2.
    Uzunov, I. M. Stoev, V. D., Tzoleva, T. I. (1992) N-soliton Interaction in Trains of Unequal Soliton Pulses in Optical Fibers, Optics Lett. Vol. 20, pp. 1417–1419.ADSCrossRefGoogle Scholar
  3. 3.
    Suzuki, M., Edagawa, N., Taga, H., Tanaka, H., Yamamoto, Feasibility Demon-stration of 20 Gbit/s Single Channel Soliton Transmission over 11500 km Using Alternating-Amplitude Solitons, S., Akiba, S. (1994) Electron. Lett. Vol. 30 no. 13, pp. 1083–1084.CrossRefGoogle Scholar
  4. 4.
    Gerdjikov. V. S., Kaup, D. J.. Uzunov, I. M., Evstatiev, E. G. (1996) The asymptotic behavior of N-soliton trains of the Nonlinear Schrödinger Equation, Phys. Rev. Lett. Vol. 77 no., pp. 3943–3947.ADSCrossRefGoogle Scholar
  5. 5.
    Gerdjikov. V. S., Uzunov. I. M., Evstatiev, E. G., Diankov, G. L. (1997) The nonlinear Schrödinger equation and N-soliton Interactions. Generalized Karpman-Solov’ev Approach and the Complex Toda Chain, Phys. Rev. E Vol. 55 no. 5, pp. 6039–6060.MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Takhtadjan. L. A.. Faddeev, L. D. (1986) Hamiltonian Approach to Soliton Theory Springer Verlag, Berlin.Google Scholar
  7. 7.
    Kivshar, Yu. S.. Malomed, B. A. (1989) Dynamics of Soltons in Nearly Integrable Systems. Rev. Mod. Phys. Vol. 61 no. 4, pp. 763–915.ADSCrossRefGoogle Scholar
  8. 8.
    Kaup, D. J. (1990) Perturbation Theory for Solitons in Optical Fibers Phys. Rev. A Vol. 42 no. 9, pp. 5689–5694: Kaup, D. J. (1991) Second Order Perturbations for Solitons in Optical Fibers, Phys. Rev. A Vol. 44 no. 7, pp. 4582-4590.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Hasegawa, A.. Kodama, Y. (1995) Solitons in Optical Communications, Oxford University Press, Oxford. UK.zbMATHGoogle Scholar
  10. 10.
    Agrawal. G. P. (1995) Nonlinear Fiber Optics Academic, San Diego, (2-nd edition).Google Scholar
  11. 11.
    Wabnitz, S., Kodama. Y., Aceves, A. B. (1995) Control of Optical Soliton Interactions. Optical Fiber Technology, Vol. 1 no. 1, pp. 187–217.ADSCrossRefGoogle Scholar
  12. 12.
    Karpman, V. I., Solov’ev, V. V. (1981) A Perturbational Approach to the Two-Soliton Systems, Physica D Vol. 3D no. 1-2, pp. 487–502.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Okamawari. T., Hasegawa A., Kodama, Y. (1995) Analysis of Soliton Interactions by means of a Perturbed Inverse Scattering Transform, Phys. Rev. A Vol. 51 no. 4, pp. 3203–3225.ADSCrossRefGoogle Scholar
  14. 14.
    Aceves. A. B., De Angelis, C., Nalesso G., Santagiustina, M. (1994) Higher Order Effects in Bandwidth-limited Soliton Propagation in Optical Fibers, Optics Lett. Vol. 19. pp. 2104–2106.ADSCrossRefGoogle Scholar
  15. 15.
    Gorshkov, K. A. (1981) Asvmptotic Soliton Theory: Interaction, Generation, Bound States. PhD Thesis, Inst, Appl. Phys., Gorky, USSR. Gorshkov, K. A., Ostrovsky, L. A. (1981) Interactions of Solitons in Nonintegrable Systems: Direct Perturbation Method and Applications, Physica D Vol. 3D no. 1-2, pp. 428-438.Google Scholar
  16. 16.
    Arnold, J. M. (1993) Soliton Pulse Position Modulation, IEE Proc. J. Vol. 140 no. 6, pp. 359–366.Google Scholar
  17. 17.
    Uzunov, I. M., Gerdjikov, V. S., Gölles, M., Lederer, F. (1996) On the description of N-soliton interaction in optical fibers, Optics Commun. Vol. 125 no. 1, pp. 237–242.ADSCrossRefGoogle Scholar
  18. 18.
    Manakov, S. V. (1974) On Complete Integrability and Stochastization in Discrete Dynamical Systems, JETPh Vol. 67 no. 2, pp. 543–555; Flashka, H. (1974) On the Toda Lattice. II. Inverse Transform Solution, Prog. Theor. Phys. Vol.51 no. 3, pp. 703-716.MathSciNetGoogle Scholar
  19. 19.
    Moser. J. (1975) Three Integrable Hamiltonian Systems Connected with Isospectral Deformations, Adv. Math. Vol. 16 no. 2, pp. 197–220.ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Toda, M. (1989) Theory of Nonlinear Lattices Springer Verlag, Berlin, (2nd enlarged ed.).zbMATHCrossRefGoogle Scholar
  21. 21.
    Arnold, J. M. (1995) Proceedings URSI Electromagnetic Theory Symposium, St. Petersburg pp. 553–555 and private communication.Google Scholar
  22. 22.
    Uzunov. I. M., Gölles, M., Lederer, F. (1995) Soliton Interaction Near rhe Zero-Dispersion Wavelength Phys. Rev. E Vol. 52 no. 3, pp. 1059–1071.ADSCrossRefGoogle Scholar
  23. 23.
    Kodama, Y. (1996) Toda Hierarchy with Indefinite Metric Physica D Vol. 91 no. 2, pp. 321–339; Khastgir, S. P., Sasaki, R. (1996) Instability of Solitons in Imaginary Coupling Affine Toda Field Theory Prog. Theor. Phys. Vol. 95 no. 3, pp. 485-501.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Gerdjikov. V. S., Evstatiev, E. G., Kaup, D. J., Diankov, G. L., Uzunov, I. M. (1997) Criterion and Regions of Stability for Quasi-Equidistant Soliton Trains. E-print solv-int/9708004. Google Scholar
  25. 25.
    Kodama, Y., Maruta, A., Hasegawa, A. (1994) Long Distance Communications with Solitons Quantum Opt. Vol. 6, pp. 463–516.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • V. S. Gerdjikov
    • 1
  • E. G. Evstatiev
    • 1
  • D. J. Kaup
    • 2
  • G. L. Diankov
    • 3
  • I. M. Uzunov
    • 4
    • 5
  1. 1.Institute for Nuclear Energy and Nuclear ResearchSofiaBulgaria
  2. 2.Institute for Nonlinear StudiesClarkson UniversityPotsdamUSA
  3. 3.Institute of Solid State PhysicsSofiaBulgaria
  4. 4.Friedrich-Schiller University JenaJenaGermany
  5. 5.Institute of ElectronicsSofiaBulgaria

Personalised recommendations