Biotechnology and Resistance to Potato Viruses

  • Philip Berger
  • Thomas German


Potatoes are susceptible to many viruses, a situation that is exacerbated by viruses that can be transmitted through tuber seed pieces. Such vegetative propagation readily perpetuates and disperses infectious viruses and the diseases they cause. In general, most viruses are controlled by a combination of strategies that include seed certification and agronomic practices (see chapters 14, 15, 17), the most effective of which is host plant resistance. However, obtaining virus resistance is problematic. It is difficult and sometimes impossible to instill sources of resistance into cultivated potato from wild relatives, and obtain or retain agronomically useful cultivars. As a consequence, seed potato certification programs expend significant time and resources to minimize the amount of virus inoculum that enters commercial production. The economic and environmental cost of these practices, such as the application of pesticides for vector control, is of serious concern both to potato producers and consumers.


Transgenic Plant Coat Protein Potato Virus Transgenic Potato Barley Yellow Dwarf Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Audy, P., Palukaitis, P., Slack, S. A. and Zaitlin, M. 1994. Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol. Plant Microbe Interact. 7:15–22.PubMedGoogle Scholar
  2. Barker, H. and Harrison, B. D. 1986. Restricted multiplication of potato leafroll virus in resistant potato genotypes. Ann. Appl. Biol. 107:595–604.Google Scholar
  3. Barker, H., Reavy, B., Kumar, A., Webster, K. and Mayo, M. 1992. Restricted virus multiplication in potatoes transformed with the coat protein gene of potato leafroll luteovirus: Similarities with a type of host gene-mediated resistance. Ann. Appl. Biol. 120:55–64.Google Scholar
  4. Barker, H., Reavy, B., McGeachy, K. D. and Dawson, S. 1998. Transformation of Nicotiana benthamiana with the potato mop-top virus coat protein gene produces a novel resistance phenotype mediated by the coat protein. Mol. Plant Microbe Interact. 11:626–633.Google Scholar
  5. Barker, H., Reavy, B., Webster, K. D., Jolly, C. A., Kumar, A. and Mayo, M. A. 1993. Relationship between transcript production and virus resistance in transgenic tobacco expressing the potato leafroll virus coat protein gene. Plant Cell Reports 13:54–58.PubMedGoogle Scholar
  6. Barker, H., Webster, K. D., Jolly, C. A., Reavy, B., Kumar, A. and Mayo, M. A. 1994. Enhancement of resistance to potato leafroll virus multiplication in potato by combining the effects of host genes and transgenes. Mol. Plant Microbe Interact. 7:528–530.PubMedGoogle Scholar
  7. Baulcombe, D. C. 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844.PubMedGoogle Scholar
  8. Beachy, R. N., Loesch-Fries, S. and Turner, N. E. 1990. Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28:451–474.Google Scholar
  9. Beck, D. L., Guilford, P. J., Voot, D. M., Andersen, M. T. and Forster, R. L. S. 1991. Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183:695–702.PubMedGoogle Scholar
  10. Beck, D. L., Van Dolleweerd, C. J., Lough, T. J., Balmori, E., Voot, D. M., Andersen, M. T., O’Brien, I. E. W. and Forster, R. L. S. 1994. Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc. Natl. Acad. Sci. USA 91:10310–10314.PubMedGoogle Scholar
  11. Belknap, W. R., Corsini, D., Pavek, J. J., Snyder, G. W., Rockhold, D. R. and Vayda, M. E. 1994. Field performance of transgenic Russet Burbank and Lemhi Russet potatoes. Am. Pot. J. 71:285–296.Google Scholar
  12. Bonness, M. S., Ready, M. P., Irvin, J. D. and Mabry, T. J. 1994. Pokeweed antiviral protein inactivates pokeweed ribosomes; Implications for the antiviral mechanism. Plant J. 5:173–183.PubMedGoogle Scholar
  13. Braun, C. and Hemenway, C. 1992. Expression of amino-terminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell 4:735–744.PubMedGoogle Scholar
  14. Brown, C. R., Smith, O. P., Damsteegt, V. D., Yang, C.-P., Fox, L. and Thomas, P. E. 1995. Suppression of PLRV titer in transgenic Russet Burbank and Ranger Russet. Am. Pot. J. 72:589–597.Google Scholar
  15. Candresse, T. 1996. The use of pathogen derived resistance and other strategies to obtain transgenic plants resistant to viruses. Acta Hort. 424:369–374.Google Scholar
  16. Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A. and Beachy, R. N. 1995. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307–313.PubMedGoogle Scholar
  17. Crute, I. R. and Pink, D. A. C. 1996. Genetics and utilization of pathogen resistance in plants. Plant Cell 8:1747–1755.PubMedGoogle Scholar
  18. Derrick, P. M. and Barker, H. 1992. The restricted distribution of potato leafroll luteovirus antigen in potato plants with transgenic resistance resembles that in clones with one type of host gene-mediated resistance. Ann. Appl. Biol. 120:451–457.Google Scholar
  19. Derrick, P. M. and Barker, H. 1997. Short and long distance spread of potato leafroll luteovirus: Effects of host genes and transgenes conferring resistance to virus accumulation in potato. J. Gen. Virol. 78:243–251.PubMedGoogle Scholar
  20. Dougherty, W. G., Lindbo, J. A., Smith, H. A., Parks, T. D., Swaney, S. and Proebsting, W. M. 1994. RNA-mediated virus resistance in transgenic plants: Exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant Microbe Interact. 7:544–552.PubMedGoogle Scholar
  21. Farinelli, L. and Malnoë, P. 1993. Coat protein gene-mediated resistance to potato virus Y in tobacco: required for protection? Mol. Plant Microbe Interact. 6:284–292.PubMedGoogle Scholar
  22. Ferber, D. 1999. GM Crops in the Cross Hairs. Science 286:1662–1666.PubMedGoogle Scholar
  23. Fitchen, J. H. and Beachy, R. N. 1993. Genetically engineered protection against viruses in transgenic plants. Annu. Rev. Microbiol. 47:739–763.PubMedGoogle Scholar
  24. Gatehouse, A. M. R., Down, R. E., Powell, K. S., Sauvion, N., Rahbé, Y., Newell, C. A., Merryweather, A., Hamilton, W. D. O. and Gatehouse, J. A. 1996. Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomol. Exp. Appl. 79:295–307.Google Scholar
  25. Golemboski, D. B., Lomonosoff, G. P. and Zaitlin, M. 1990. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87:6311–6315.PubMedGoogle Scholar
  26. Gray, S. M., Power, A. G., Smith, D. M., Seaman, A. J. and Altman, N. S. 1991. Aphid transmission of barley yellow dwarf virus: Acquisition access periods and virus concentration requirements. Phytopathology 81:539–545.Google Scholar
  27. Gray, S. M., Smith, D. and Sorrells, M. 1994. Reduction of disease incidence in small field plots by isolate-specific resistance to barley yellow dwarf virus. Phytopathology 84:713–718.Google Scholar
  28. Hackland, A. F., Rybicki, E. P. and Thomson, J. A. 1994. Coat protein-mediated resistance in transgenic plants. Arch. Virol 139:1–22.PubMedGoogle Scholar
  29. Hassairi, A., Masmoudi, K., Albouy, J., Robaglia, C., Jullien, M. and Ellouz, R. 1998. Transformation of two potato cultivars’ spunta’ and ‘Claustar’ (Solanum tuberosum) with lettuce mosaic virus coat protein gene and heterologous immunity to potato virus Y. Plant Sci. 136:31–42.Google Scholar
  30. Hassan, S., Thomas, P. E. and Mink, G. I. 1985. Tomato yellow top virus: host range, symptomatology, transmission, and variability. Phytopathology 75:287–291.Google Scholar
  31. Hefferon, K. L., Doyle, S. and AbouHaidar, M. G. 1997a. Immunological detection of the 8K protein of potato virus X (PVX) in cell walls of PVX-infected tobacco and transgenic potato. Arch. Virol. 142:425–433.PubMedGoogle Scholar
  32. Hefferon, K. L., Khalilian, H. and AbouHaidar, M. G. 1997b. Expression of the PVYO coat protein (CP) under the control of the PVX CP gene leader sequence: protection under greenhouse and field conditions against PVYO and PVYN infection in three potato cultivars. Theor. Appl. Genet. 94:287–292.Google Scholar
  33. Hefferon, K. L., Khalilian, H., Xu, H. M. and Abouhaidar, M. G. 1997c. Expression of the coat protein of potato virus X from a dicistronic mRNA in transgenic potato plants. J. Gen. Virol. 78:3051–3059.PubMedGoogle Scholar
  34. Hemenway, C., Fang, R.-X., Kaniewski, W.K., Chua, N.-H. and Turner., N.E. 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7:1273–1280.PubMedGoogle Scholar
  35. Hoekema, A., Hirsh, P. R., Hooykaas, P. J. J. and Schilperoort, R. A. 1983. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180.Google Scholar
  36. Hoekema, A., Huisman, M. J., Molendijk, L. van dan Elzen, P. J. M., and Cornelissen, B. J. C. 1989. The genetic engineering of two commercial potato cultivars for resistance to potato virus X. Bio/Technology 7:273–278.Google Scholar
  37. Horsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, P. R., Lloyd, A. and Hoffmann, N. 1984. Inheritance of functional foreign genes in plants. Science 223:496–498.PubMedGoogle Scholar
  38. Huisman, M. J., Comelissen, B. and Jongedijk, E. 1992. Transgenic potato plants resistant to viruses. Euphytica 63:187–197.Google Scholar
  39. Jongedijk, E., de Schutter, A. A. J. M., Stolte, T. van den Elzen, P. J. M., and Cornelissen, B. J. C. 1992. Increase resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions. Biotechnology 10:422–429.PubMedGoogle Scholar
  40. Kaniewski, W., Lawson, C., Sammons, B., Haley, L., Hart, J., Delannay, X. and Turner, N. E. 1990. Field reistance of transgenic Russet Burbank potato to effects of infection by potato virus X and potato virus Y. Bio/Technology 8:750–754.Google Scholar
  41. Kawchuk, L. M., Martin, R. R. and McPherson, J. 1990. Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Molec. Plant-Micro. Interact. 3:301–307.Google Scholar
  42. Kawchuk, L. M., Martin, R. R. and McPherson, J. 1991. Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbank potato plants. Mol. Plant-Microbe Interact. 4:247–253.Google Scholar
  43. Kawchuk, L. M., Martin, R. R., Rochon, D. M. and McPherson, J. 1989. Identification and characterization of the potato leafroll virus putative coat protein gene. J. Gen. Virol. 70:783–788.PubMedGoogle Scholar
  44. Kozak, M. 1989. The scanning model for translation: An update. J. Cell. Biol. 108:229–241.PubMedGoogle Scholar
  45. Lamb, J. W. and Hay, R. T. 1990. Ribozymes that cleave potato leafroll virus RNA within the coat protein and polymerase genes. J. Gen. Virol. 71:2257–2264.PubMedGoogle Scholar
  46. Lapidot, M., Gafny, R., Ding, B., Wolf, S., Lucas, W. J. and Beachy, R. N. 1993. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J 4:959–970.Google Scholar
  47. Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P. and Turner, N. E. 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: Resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Biotechnology 8:127–134.PubMedGoogle Scholar
  48. Leclerc, D. and AbouHaidar, M. G. 1995. Transgenic tobacco plants expressing a truncated form of the PAMV capsid protein (CP) gene show CP-mediated resistance to potato aucuba mosaic virus. Mol. Plant Microbe Interact., 8:58–65.PubMedGoogle Scholar
  49. Lindbo, J. A. and Dougherty, W. G. 1992a. Pathogen-derived resistance to a potyvirus: Immune and resistant phenotypes in transgenic tobacco expressing altered coat protein nucleotide sequence. Mol. Plant-Microbe Interact., 5:144–153.PubMedGoogle Scholar
  50. Lindbo, J. A. and Dougherty, W. G. 1992b. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733.PubMedGoogle Scholar
  51. Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M. and Dougherty, W. G. 1993. Induction of a highly specific antiviral state in transgenic plants: Implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759.PubMedGoogle Scholar
  52. Lino, Y., Sugimoto, A. and Yamamoto, M. 1991. S. pombe pac1 +, whose overexpression inhibits sexual development, encodes a ribonuclease III-like RNase. EMBO J. 10:221–226.Google Scholar
  53. Livneh, O., Edelbaum, O., Kuznetsova, L., Livne, B., Vardi, E., Sela, I. and Strain, Y. 1995. Plants transformed with the first (nonstructural) three cistrons of potato virus Y are resistant to potato virus infection. Transgenics 1:565–571.Google Scholar
  54. Lodge, J. K., Kaniewski, W. K. and Turner, N. E. 1993. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA 90:7089–7093.PubMedGoogle Scholar
  55. Lomonossoff, G. P. 1995. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33:323–343.PubMedGoogle Scholar
  56. Longstaff, M., Brigneti, G., Boccard, F., Chapman, S. and Baulcombe, D. 1993. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 12:379–386.PubMedGoogle Scholar
  57. Lough, T. J., Shash, K., Xoconostle-Cázares, B., Hofstra, K. R., Beck, D. L., Balmori, E., Forster, R. L. S. and Lucas, W. J. 1998. Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol. Plant Microbe Interact. 11:801–814.Google Scholar
  58. MacKenzie, D. J. and Tremaine, J. H. 1990. Transgenic Nicotiana debneyii expressing viral coat protein are resistant to potato virus S infection. J. Gen. Virol. 71:2167–2170.PubMedGoogle Scholar
  59. Maiti, I. B., Murphy, J. F., Shaw, J. G. and Hunt, A. G. 1993. Plants that express a potyvirus proteinase gene are resistant to virus infection. Proc. Natl. Acad. Sci. USA 90:6110–6114.PubMedGoogle Scholar
  60. Malnoë, P., Farinelli, L., Collet, G. F. and Reust, W. 1994. Small-scale field tests with transgenic potato, cv. Bintje, to test resistance to primary and secondary infections with potato virus Y. Plant Mol. Biol. 25:963–975.PubMedGoogle Scholar
  61. Martin, R. R. 1994. Genetic engineering of potato. Am. Pot. J. 71:347–358.Google Scholar
  62. Masuta, C., Tanaka, H., Uehara, K., Kuwata, S., Koiwai, A. and Noma, M. 1995. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions. Proc. Natl. Acad. Sci. USA 92:6117–6121.PubMedGoogle Scholar
  63. McDonald, J. G., Brandie, J. E., Gleddie, S., Hermans, J. A. and Kermali, I. R. 1997. Resistance to homologous and heterologous strains of potato virus Y in transgenic tobacco carrying the PVYN coat protein gene. Can. J. Plant Sci. 77:167–171.Google Scholar
  64. Medeiros, R. B., Ullman, D. E., Sherwood, J. L. and German, T. L. 2000. Immunoprecipitation of a 50 kDa protein: a putative receptor component for tomato spotted wilt tosposvirus (Bunyaviridae) in its insect vector, Franklinella occidentalis. Virus Res. (in press).Google Scholar
  65. Mitra, A., Higgins, D. W., Langenberg, W. G., Nie, H. Q., Sengupta, D. N. and Silverman, R. H. 1996. A mammalian 2–5A system functions as an antiviral pathway in transgenic plants. Proc. Natl. Acad. Sci. USA 93:6780–6785.PubMedGoogle Scholar
  66. Ooms, G., Burrell, M. M., Karp, A., Bevan, M. and Hille, J. 1987. Genetic transformation in two potato cultivars with T-DNA from disarmed Agrobacterium. Theor. Appl. Genet. 73:744–750.PubMedGoogle Scholar
  67. Ooms, G., Karp, A. and Roberts, J. 1983. From tumour to tuber; tumour cell characteristics and chromosome numbers in crown gall-derived tetraploid potato plants (Solanum tuberosum cv Maris Bard). Theor. Appl. Genet. 66:169–172.Google Scholar
  68. Ooms, G. and Lenton, J. R. 1985. T-DNA genes to study plant development: precocious tuberisation and enhanced cytokinins in A. tumefaciens transformed potato. Plant Mol. Biol. 5:205–212.Google Scholar
  69. Palukaitis, P. and Zaitlin, M. 1997. Replicase-mediated resistance to plant virus disease. Adv. Virus Res. 48:349–377.PubMedGoogle Scholar
  70. Ploeg, A. T., Mathis, A., Bol, J. F., Brown, D. J. F. and Robinson, D. J. 1993. Susceptibility of transgenic tobacco plants expressing tobacco rattle virus coat protein to nematode-transmitted and mechanically inoculated tobacco rattle virus. J. Gen. Virol. 74:2709–2715.PubMedGoogle Scholar
  71. Powell Abel, P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T. and Beachy, R. N. 1986. Delay in disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743.Google Scholar
  72. Presting, G. G., Smith, O. P. and Brown, C. R. 1995. Resistance to potato leafroll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology 85:436–442.Google Scholar
  73. Prins, M. and Goldbach, R. 1996. RNA-mediated virus resistance in transgenic plants. Arch. Virol. 141:2259–2276.PubMedGoogle Scholar
  74. Reavy, B., Arif, M., Kashiwazaki, S., Webster, K. D. and Barker, H. 1995. Immunity to potato mop-top virus in Nicotiana benthamiana plants expressing the coat protein gene is effective against fungal inoculation of the virus. Mol. Plant Microbe Interact. 8:286–291.PubMedGoogle Scholar
  75. Rotondo, G. and Frendewey, D. 1996. Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res. 24:2377–2386.PubMedGoogle Scholar
  76. Rotondo, G., Huang, J. Y. and Frendewey, D. 1997. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharomyces pombe. RNA Publ.RNA Soc. 3:1182–1193.Google Scholar
  77. Sano, T., Nagayama, A., Ogawa, T., Ishida, I. and Okada, Y. 1997. Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid. Nat. Biotechnol. 15:1290–1294.PubMedGoogle Scholar
  78. Scholthof, K. B. G., Scholthof, H. B. and Jackson, A. O. 1993. Control of plant virus diseases by pathogen-derived resistance in transgenic plants. Plant Physiol 102:7–12.PubMedGoogle Scholar
  79. Sen, G. C. and Lengyel, P. 1992. The interferon system. A bird’s eye view of its biochemistry. J. Biol. Chem. 267:5017–5020.PubMedGoogle Scholar
  80. Sen, G. C. and Ransohoff, R. M. 1993. Interferon-induced antiviral actions and their regulation. Adv. Virus Res. 42:57–102.PubMedGoogle Scholar
  81. Seppänen, P., Puska, R., Honkanen, J., Tyulkina, L. G., Fedorkin, O., Morozov, S. Y. and Atabekov, J. G. 1997. Movement protein-derived resistance to triple gene block-containing plant viruses. J. Gen. Virol. 78:1241–1246.PubMedGoogle Scholar
  82. Shahin, E. and Simpson, R. 1986. Gene transfer system for potato. Hort. Sci. 21:1199–1201.Google Scholar
  83. Sheerman, S. and Bevan, M. W. 1988. A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Repts. 7:13–16.Google Scholar
  84. Smirnov, S., Shulaev, V. and Turner, N. E. 1997. Expression of pokeweed antiviral protein in transgenic plants induces virus resistance in grafted wild-type plants independently of salicylic acid accumulation and pathogenesis-related protein synthesis. Plant Physiol. 114:1113–1121.PubMedGoogle Scholar
  85. Smith, H. A., Powers, H., Swaney, S., Brown, C. and Dougherty, W. G. 1995. Transgenic potato virus Y resistance in potato: Evidence for an RNA-mediated cellular response. Phytopathology 85:864–870.Google Scholar
  86. Smith, H. A., Swaney, S. L., Parks, T. D., Wernsman, E. A. and Dougherty, W. G. 1994. Transgenic plant virus resistance mediated by untranslatable sense RNAs: Expression, regulation, and the fate of nonessential RNAs. Plant Cell 6:1441–1453.PubMedGoogle Scholar
  87. Stark, D. M. and Beachy, R. N. 1989. Protection against potyvirus infection in transgenic plants: Evidence for broad spectrum resistance. Bio/Technology 7:1257–1262.Google Scholar
  88. Stiekema, W. J., Heidekamp, F., Louwerse, J. D., Verhoeven, H. A. and Dijkhuis, P. 1988. Introduction of foreign genes into potato cultivars Bintje and Désirée using an Agrobacterium tumefaciens binary vector. Plant Cell Rep. 7:47–50.PubMedGoogle Scholar
  89. Tacke, E., Salamini, F. and Rohde, W. 1996. Genetic engineering of potato for broad-spectrum protection against virus infection. Nature Biotechnology 14:1597–1601.PubMedGoogle Scholar
  90. Tavazza, R., Tavazza, M., Ordas, R. J., Ancora, G. and Benvenuto, E. 1988. Genetic transformation of potato (Solanum tuberosum): An efficient method to obtain transgenic plants. Plant Sci. 59:175–181.Google Scholar
  91. Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A. and Galeffi, P. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472.PubMedGoogle Scholar
  92. Taylor, S., Massiah, A., Lomonossoff, G., Roberts, L. M., Lord, J. M. and Hartley, M. 1994. Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J. 5:827–835.PubMedGoogle Scholar
  93. Thomas, P. E., Kaniewski, W. K. and Lawson, E. C. 1997. Reduced field spread of potato leafroll virus in potatoes transformed with the potato leafroll virus coat protein gene. Plant Dis. 81:1447–1453.Google Scholar
  94. Truve, E., Aaspôllu, A., Honkanen, J., Puska, R., Mehto, M, Hassi, A., Teeri, T. H., Kelve, M., Seppänen, P. and Saarma, M. 1993. Transgenic potato plants expressing mammalian 2′–5′ oligoadenylate synthetase are protected from potato virus X infection under field conditions. Biotechnology 11:1048–1052.PubMedGoogle Scholar
  95. Truve, E., Kelve, M., Aaspôllu, A., Kuusksalu, A., Seppänen, P. and Saarma, M. 1994. Principles and background for the construction of transgenic plants displaying multiple virus resistance. Arch. Virol. 9:41–50.Google Scholar
  96. van den Elzen, P. J. M., Huisman, M. J., Posthumus-Lutke Willink, D., Jongedijk, E., Hoekema, A. and Cornelissen, B. J. C. 1989. Engineering virus resistance in agricultural crops. Plant Mol. Biol. 13:337–346.PubMedGoogle Scholar
  97. van den Heuvel, J. F. J. M., Boerma, T. M. and Peters, D. 1991. Transmission of potato leafroll virus from plants and artificial diets of Myzus persicae. Phytopathology 81:150–154.Google Scholar
  98. Van der Vlugt, R., Ruiter, R. and Goldbach, R. 1992. Evidence for sense RNA-mediated protection to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol. Biol. 20:631–639.PubMedGoogle Scholar
  99. van der Wilk, F., Posthumus-Lutke Willink, D., Hiusman, M. J., Huttinga, H. and Goldbach, R. 1991. Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits viral infection. Plant Mol. Biol. 17:431–439.PubMedGoogle Scholar
  100. Van Dun, C. M. P. and Bol, J. F. 1988. Transgenic potato plants accumulating tobacco rattle virus coat protein resist infection with tobacco rattle virus and pea early browning virus. Virology 167:649–652.PubMedGoogle Scholar
  101. Vardi, E., Sela, I., Edelbaum, O., Livneh, O., Kuznetsova, L. and Stram, Y. 1993. Plants transformed with a cistron of a potato virus Y protease (NIa) are resistant to virus infection. Proc. Natl. Acad. Sci. USA 90:7513–7517.PubMedGoogle Scholar
  102. Wang, P. G., Zoubenko, O. and Turner, N. E. 1998. Reduced toxicity and broad spectrum resistance to viral and fungal infection in transgenic plants expressing pokeweed antiviral protein II. Plant Mol.Biol. 38:957–964.PubMedGoogle Scholar
  103. Watanabe, K., Kawasaki, T., Sako, N. and Funatsu, G. 1997. Actions of pokeweed antiviral protein on virus-infected protoplasts. Biosci.Biotechnol.Biochem. 61:994–997.PubMedGoogle Scholar
  104. Watanabe, Y., Ogawa, T., Takahashi, H., Ishida, I., Takeuchi, Y., Yamamoto, M. and Okada, Y. 1995. Resistance against multiple plant viruses in plants mediated by a double stranded RNA specific ribonuclease. FEBS Lett. 372:165–168.PubMedGoogle Scholar
  105. Wilson, T. M. A. 1993. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90:3134–3141.PubMedGoogle Scholar
  106. Xu, H., Khalilian, H., Eweida, M., Squire, S. and Abouhaidar, M. G. 1998. Genetically engineered resistance to potato virus X in four commercial potato cultivars. Plant Cell Repts. 15:91–96.Google Scholar
  107. Xu, H.-P., Riggs, M., Rodgers, L. and Wigler, M. 1990. A gene from S. pombe with homology to E. coli RNAse III blocks conjugation and sporulation when overexpressed in wild type cells. Nucl Acids Res. 18:5304.PubMedGoogle Scholar
  108. Yang, X. C., Yie, Y., Zhu, F., Liu, Y. L., Kang, L. Y., Wang, X. F. and Tien, P. 1997. Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic potatoes. Proc. Natl. Acad. Sci. USA 94:4861–4865.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Philip Berger
    • 1
  • Thomas German
    • 2
  1. 1.Dept. of Plant, Soil and Entomological SciencesUniversity of IdahoMoscowUSA
  2. 2.Dept. of Plant PathologyUniversity of WisconsinMadisonUSA

Personalised recommendations