Advertisement

Background Results

  • D. Mundici
Chapter
Part of the Trends in Logic book series (TREN, volume 35)

Abstract

To help the reader, we collect here several results on MV-algebras that have found use in earlier chapters. All proofs are given

Keywords

Prime Ideal Maximal Ideal Compact Hausdorff Space Nonempty Closed Subset Barycentric Subdivision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D. (2000). Algebraic foundations of many-valued reasoning. Volume 7 of Trends in logic. Dordrecht: Kluwer.zbMATHGoogle Scholar
  2. 2.
    Brønsted, A. (1983). An introduction to convex polytopes. Graduate texts in mathematics (Vol. 90). New York: Springer.CrossRefGoogle Scholar
  3. 3.
    Ewald, G. (1996). Combinatorial convexity and algebraic geometry. Graduate texts in mathematics (Vol. 168). Heidelberg: Springer.CrossRefGoogle Scholar
  4. 4.
    Rourke, C. P., Sanderson, B. J. (1972). Introduction to piecewise-linear topology. Berlin: Springer.zbMATHGoogle Scholar
  5. 5.
    Hudson, J. F. P. (1969). Piecewise linear topology. New York: W.A. Benjamin .zbMATHGoogle Scholar
  6. 6.
    Hardy, G. H., Wright, E. M. (1960). An introduction to the theory of numbers (5th ed.). Oxford: Clarendon Press.zbMATHGoogle Scholar
  7. 7.
    Włodarczyk, J. W. (1997). Decompositions of birational toric maps in blow-ups and blow-downs. Transactions of the American Mathematical Society 349, 373–411.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Morelli, R. (1996). The birational geometry of toric varieties. Journal of Algebraic Geometry 5, 751–782.zbMATHMathSciNetGoogle Scholar
  9. 9.
    Glaser, L. C. (1970). Geometric combinatorial topology (Vol. I). New York: Van Nostrand Reinhold.Google Scholar
  10. 10.
    Yosida, K. (1980). Functional analysis (6th ed.). Berlin: Springer.zbMATHGoogle Scholar
  11. 11.
    Rudin, W. (1966). Real and complex analysis. New York: McGraw-Hill.zbMATHGoogle Scholar
  12. 12.
    Hewitt, E., Stromberg, K. (1965). Real and abstract analysis. Graduate texts in mathematics (Vol. 25). New York: Springer.Google Scholar
  13. 13.
    Hirsch, F., Lacombe, G. (1999). Elements of Functional Analysis. Graduate texts in mathematics (Vol. 192). New York: Springer.Google Scholar
  14. 14.
    Conway, J. B. (1985). A course in functional analysis. Graduate texts in mathematics (Vol. 96). New York: Springer.Google Scholar
  15. 15.
    Sikorski, R. (1960). Boolean algebras. Ergebnisse Math. Grenzgeb. Berlin: Springer.Google Scholar
  16. 16.
    Bigard, A., Keimel, K., Wolfenstein, S. (1977). Groupes et Anneaux Réticulés. Lecture notes in mathematics (Vol. 608). New York: Springer.Google Scholar
  17. 17.
    Fuchs, L. (1963). Partially ordered algebraic systems. Oxford: Pergamon Press.zbMATHGoogle Scholar
  18. 18.
    Spanier, E. H. (1966). Algebraic topology, McGraw-Hill. Corrected reprint, New York-Berlin: Springer 1981/1986.Google Scholar
  19. 19.
    Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  20. 20.
    Massey, W.S. (1980). Singular homology theory. Graduate texts in mathematics (Vol. 70). New York: Springer.Google Scholar
  21. 21.
    Vick, J. W. (1994). Homology theory. Graduate texts in mathematics (Vol. 145, 2nd ed.) Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics “Ulisse Dini”University of FlorenceFlorenceItaly

Personalised recommendations