States and the Kroupa–Panti Theorem

  • D. Mundici
Part of the Trends in Logic book series (TREN, volume 35)


This chapter is largely independent of the earlier chapters. The reader is only required to have some familiarity with maximal spectral spaces


Closed Subset Convex Combination Compact Hausdorff Space Riesz Representation Theorem Regular Borel Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cignoli, R., D’Ottaviano, I., Mundici, D. (2000). Algebraic foundations of many-valued reasoning, Vol. 7 of Trends in Logic. Dordrecht: Kluwer.Google Scholar
  2. 2.
    Mundici, D. (1986). Interpretation of AF \(C^{*}\)-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis, 65, 15–63.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    de Finetti, B. (1931). Sul significato soggettivo della probabilitá. (in Italian). Fundamenta Mathematicae, 17,298–329, Translated into English as “On the Subjective Meaning of Probability.” In P. Monari and D. Cocchi (Eds.), Probabilitá e Induzione, pp. 291–321. Bologna: Clueb, 1993.Google Scholar
  4. 4.
    de Finetti B. (1937). La prévision: ses lois logiques, ses sources subjectives, Annales de l’Institut H. Poincaré, 7,1–68, Translated into English by Henry E. Kyburg Jr., as “Foresight: Its Logical Laws, its Subjective Sources.” In: Henry E. Kyburg Jr. & Howard E. Smokler (Eds.), Studies in Subjective Probability, Wiley, New York, 1964. Second edition published by Krieger, New York, pp. 53–118, 1980.Google Scholar
  5. 5.
    de Finetti, B. (1974). Theory of Probability, 1. Chichester: Wiley.Google Scholar
  6. 6.
    Aguzzoli, S., Gerla, B., Marra, V. (2008). De Finetti’s no-Dutch-Book criterion for Gödel logic. Studia Logica, 90, 25–41.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kühr, J., Mundici, D. (2007). De Finetti theorem and Borel states in [0,1]-valued algebraic logic. International Journal of Approximate Reasoning, 46, 605–616.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Paris, J. (2001). A note on the Dutch Book method. In G. De Cooman et al. (Eds.), Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications, (pp. 301–306), ISIPTA 2001, Ithaca, NY, USA: Shaker Publishing Company (Available at
  9. 9.
    Flaminio, T., Montagna, F. (2007). An algebraic approach to states on MV-algebras. In M. Štěpnička, et al., (Eds.). Proceedings 5th EUSFLAT07 Conference (Vol. 2, pp. 201–206) Ostrava (Czech Republic).Google Scholar
  10. 10.
    Flaminio, T., Montagna, F. (2011). Models for many-valued probabilistic reasoning. Journal of Logic and Computation, 21(3), 447–464.Google Scholar
  11. 11.
    Fedel, M., Keimel, K., Montagna, F., Roth, W. (2009). Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic, Forum Mathematicum. doi:10.1515/FORM.2011.123.Google Scholar
  12. 12.
    Semadeni, Z. (1971). Banach spaces of continuous functions. Warszawa: Polish Scientific Publishers.zbMATHGoogle Scholar
  13. 13.
    Kroupa, T. (2006). Every state on semisimple MV-algebra is integral. Fuzzy Sets ad Systems, 157, 2771–2782.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Panti, G. (2008). Invariant measures in free MV-algebras. Communications in Algebra, 36, 2849–2861.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Mundici, D. (2009). Interpretation of De Finetti coherence criterion in Łukasiewicz logic. Annals of Pure and Applied Logic, 161, 235–245.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yosida, K. (1980). Functional Analysis, Sixth edition. Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics “Ulisse Dini”University of FlorenceFlorenceItaly

Personalised recommendations