Prologue: de Finetti Coherence Criterion and Łukasiewicz Logic

  • D. Mundici
Part of the Trends in Logic book series (TREN, volume 35)


In this chapter we will see that coherent probability assessments on (not necessarily yes–no) events, such as those given by the measurement of physical observables, are convex combinations of valuations in Łukasiewicz propositional logic Ł\(_\infty.\)Besides familiarity with [1], the only prerequisite for this chapter is some acquaintance with the very basic properties of convex sets in euclidean space.


Convex Combination Continuous Piecewise Linear Function Positive Linear Functional Coherence Criterion Regular Borel Probability Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D. (2000). Algebraic foundations of many-valued reasoning. Volume 7 of Trends in Logic. Dordrecht: KluwerGoogle Scholar
  2. 2.
    de Finetti, B. (1993). Sul significato soggettivo della probabilitá. (in Italian), Fundamenta Mathematicae, 17, 298–329, 1931. Translated into English as "On the Subjective Meaning of Probability (pp. 291–321)". In P. Monari & D. Cocchi (Eds.), Probabilitá e Induzione. Bologna: Clueb.Google Scholar
  3. 3.
    de Finetti, B. (1980). La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut H. Poincaré, 7 (pp. 1–68), 1937. Translated into English by Henry E. Kyburg Jr., as “Foresight: Its Logical Laws, its Subjective Sources”. In H. E. Kyburg Jr. & H. E. Smokler (Eds.), Studies in subjective probability. Wiley: New York, 1964. Second edition published by Krieger, New York, pp. 53–118.Google Scholar
  4. 4.
    de Finetti, B. (1974). Theory of Probability, Vol. 1. Chichester: Wiley.Google Scholar
  5. 5.
    Mundici, D. (1986). Interpretation of AF \(C^{\ast}\)-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis, 65, 15–63.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Mundici, D. (2009). Interpretation of De Finetti coherence criterion in Łukasiewicz logic. Annals of Pure and Applied Logic, 161, 235–245.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hay, L.S. (1963). Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic, 28, 77–86.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Wójcicki, R. (1973). On matrix representations of consequence operations of Łukasiewicz sentential calculi, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 19, 239–247, Reprinted in: [255], p. 101–111.Google Scholar
  9. 9.
    Pogorzelski, W. A. (1964). A survey of deduction theorems for sentential calculi, (Polish) Studia Logica, 15, 163–178.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Wójcicki, R. (1988). Theory of Logical Calculi: Basic Theory of Consequence Operations, Synthese Library, Vol. 199. Dordrecht: Kluwer.Google Scholar
  11. 11.
    Mundici, D. (1988). The derivative of truth in Łukasiewicz sentential calculus, Contemporary Mathematics, American Mathematical Society, 69, 209–227.MathSciNetGoogle Scholar
  12. 12.
    Emch, G. G. (1984). Mathematical and conceptual foundations of 20th century physics, Notas de Matemática, Vol. 100, Amsterdam: North-Holland.Google Scholar
  13. 13.
    Conway, J. B. (1985). A course in functional analysis, Graduate Texts in Mathematics, Vol. 96, New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics “Ulisse Dini”University of FlorenceFlorenceItaly

Personalised recommendations