Skip to main content

Methods for the Isolation of Phosphoproteins and Phosphopeptides for Mass Spectrometry Analysis: Toward Increased Functional Phosphoproteomics

  • Chapter
  • First Online:
Sample Preparation in Biological Mass Spectrometry

Abstract

Reversible phosphorylation is arguably the best understood, if not the most important mechanism a cell employs to dynamically regulate protein (and thereby cellular) activity. In recent years the field of proteomics has acquired an impressive tool kit with which to study protein phosphorylation on a more global scale. These tools build upon classical techniques and incorporate novel methodologies, all propelled by rapid advances in mass spectrometers that function with increased speed, sensitivity and resolution. The depth and breadth of phosphoproteomic analyses are becoming increasingly comprehensive from both cumulative and single-study perspectives. Phosphoproteomics is now poised to become increasingly functional as experimental design incorporates the amassed wealth of current biological understanding with novel technologies and quantitative mass spectrometry. In this chapter, three important phosphoproteomic sample preparation methodologies are described: classical phospho-dependent affinity chromatography, tandem strong cation exchange-immobilized metal affinity chromatography (SCX-IMAC), and immunoaffinity chromatography. Each method is discussed with an eye toward designing experiments that maximize phospho-dependent functional understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQUA:

Absolute Quantification

ApoER2:

ApoE Receptor 2

ATP:

Adenosine Triphosphate

ATM:

Ataxia-Telangiectasia Mutated

ATR:

Ataxia-Telangiectasia Mutated and Rad3-Related

BRCT:

Breast Cancer 1 C-terminal

CST:

Cell Signaling Technology

Crk:

CT10-Regulator of Kinase

CrkL:

CT10-Regulator of Kinase-Like

Dab1:

Disabled-1

FHA:

Forkhead-Associated

GST:

Glutathione-S Transferase

IMAC:

Immobilized Metal Affinity Chromatography

LC:

Liquid Chromatography

MH2:

Mother Against Decapentaplegic Homology 2

MS:

Mass Spectrometry

PhPO4 :

Phenyl Phosphate

PI 3-K:

Phosphoinositide 3-Kinase

PLC:

Phospholipase C

PTB:

Phosphotyrosine-Binding

pY-Dab1:

Phosphotyrosyl-Disabled-1

PTM:

Posttranslational Modification

RTK:

Receptor Tyrosine Kinase

RSK:

90 Kilodalton Ribosomal S6 Kinase

Sf9:

Spodoptera frugiperda-9

SFK:

Src Family Tyrosine Kinase

SDS-PAGE:

Sodium Dodecyl Dulfate Polyacrylamide Gel Electrophoresis

SH2:

Src Homology 2

SCX:

Strong Cation Exchange Chromatography

TCA:

Trichloroacetic Acid

VLDLR:

Very Low Density Lipoprotein Receptor

References

  • Anjum, R., Roux, P.P., Ballif, B.A., Gygi, S.P., and Blenis, J. (2005). The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol 15, 1762–1767.

    Article  CAS  Google Scholar 

  • Arnaud, L., Ballif, B.A., Forster, E., and Cooper, J.A. (2003). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13, 9–17.

    Article  CAS  Google Scholar 

  • Ballif, B.A., Arnaud, L., Arthur, W.T., Guris, D., Imamoto, A., and Cooper, J.A. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr Biol 14, 606–610.

    Article  CAS  Google Scholar 

  • Ballif, B.A., Arnaud, L., and Cooper, J.A. (2003). Tyrosine phosphorylation of disabled-1 is essential for reelin-stimulated activation of akt and Src family kinases. Brain Res Mol Brain Res 117, 152–159.

    Article  CAS  Google Scholar 

  • Ballif, B.A., Cao, Z., Schwartz, D., Carraway, K.L., 3rd., and Gygi, S.P. (2006). Identification of 14-3-3epsilon substrates from embryonic murine brain. J Proteome Res 5, 2372–2379.

    Article  CAS  Google Scholar 

  • Ballif, B.A., Carey, G.R., Sunyaev, S.R., and Gygi, S.P. (2008). Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res 7, 311–318.

    Article  CAS  Google Scholar 

  • Ballif, B.A., Roux, P.P., Gerber, S.A., MacKeigan, J.P., Blenis, J., and Gygi, S.P. (2005). Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci USA 102, 667–672.

    Article  CAS  Google Scholar 

  • Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J., and Gygi, S.P. (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285–1292.

    Article  CAS  Google Scholar 

  • Benzinger, A., Muster, N., Koch, H.B., Yates, J.R., 3rd., and Hermeking, H. (2005). Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 4, 785–795.

    Article  CAS  Google Scholar 

  • Berezin, I.V., Levashov, A.V., and Martinek, K. (1970). On the modes of interaction between competitive inhibitors and the alpha-chymotrypsin active centre. FEBS Lett 7, 20–22.

    Article  CAS  Google Scholar 

  • Boersema, P.J., Foong, L.Y., Ding, V.M., Lemeer, S., van Breukelen, B., Philp, R., Boekhorst, J., Snel, B., den Hertog, J., Choo, A.B., et al. (2009). In depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immuno-affinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics 9, 84–99.

    Google Scholar 

  • Cortez, D., Glick, G., and Elledge, S.J. (2004). Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 101, 10078–10083.

    Article  CAS  Google Scholar 

  • de la Fuente van Bentem, S., Mentzen, W.I., de la Fuente, A., and Hirt, H. (2008). Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics 8, 4453–4465.

    Article  Google Scholar 

  • Dengjel, J., Kratchmarova, I., and Blagoev, B. (2009). Receptor tyrosine kinase signaling: A view from quantitative proteomics. Mol Biosyst 5, 1112–1121.

    Article  CAS  Google Scholar 

  • Druker, B.J., Mamon, H.J., and Roberts, T.M. (1989). Oncogenes, growth factors, and signal transduction. N Engl J Med 321, 1383–1391.

    Article  CAS  Google Scholar 

  • Elia, A.E., Rellos, P., Haire, L.F., Chao, J.W., Ivins, F.J., Hoepker, K., Mohammad, D., Cantley, L.C., Smerdon, S.J., and Yaffe, M.B. (2003). The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95.

    Article  CAS  Google Scholar 

  • Elias, J.E., and Gygi, S.P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207–214.

    Article  CAS  Google Scholar 

  • Feng, L., and Cooper, J.A. (2009). Dual functions of Dab1 during brain development. Mol Cell Biol 29, 324–332.

    Article  CAS  Google Scholar 

  • Forrest, A.R., Taylor, D.F., Fink, J.L., Gongora, M.M., Flegg, C., Teasdale, R.D., Suzuki, H., Kanamori, M., Kai, C., Hayashizaki, Y., et al. (2006). PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases. BMC Bioinformatics 7, 82.

    Article  Google Scholar 

  • Gerber, S.A., Kettenbach, A.N., Rush, J., and Gygi, S.P. (2007). The absolute quantification strategy: Application to phosphorylation profiling of human separase serine 1126. Methods Mol Biol 359, 71–86.

    Article  CAS  Google Scholar 

  • Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100, 6940–6945.

    Article  CAS  Google Scholar 

  • Herrick, T.M., and Cooper, J.A. (2002). A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development. Development 129, 787–796.

    CAS  Google Scholar 

  • Hiesberger, T., Trommsdorff, M., Howell, B.W., Goffinet, A., Mumby, M.C., Cooper, J.A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489.

    Article  CAS  Google Scholar 

  • Howell, B.W., Gertler, F.B., and Cooper, J.A. (1997a). Mouse disabled (mDab1): A src binding protein implicated in neuronal development. EMBO J 16, 121–132.

    Article  CAS  Google Scholar 

  • Howell, B.W., Hawkes, R., Soriano, P., and Cooper, J.A. (1997b). Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737.

    Article  CAS  Google Scholar 

  • Howell, B.W., Herrick, T.M., Hildebrand, J.D., Zhang, Y., and Cooper, J.A. (2000). Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr Biol 10, 877–885.

    Article  CAS  Google Scholar 

  • Hunter, T., and Plowman, G.D. (1997). The protein kinases of budding yeast: Six score and more. Trends Biochem Sci 22, 18–22.

    Article  CAS  Google Scholar 

  • Jin, J., Smith, F.D., Stark, C., Wells, C.D., Fawcett, J.P., Kulkarni, S., Metalnikov, P., O’Donnell, P., Taylor, P., Taylor, L., et al. (2004). Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14, 1436–1450.

    Article  CAS  Google Scholar 

  • Johnson, S.A., and Hunter, T. (2005). Kinomics: Methods for deciphering the kinome. Nat Methods 2, 17–25.

    Article  CAS  Google Scholar 

  • Krebs, E.G., and Fischer, E.H. (1956). The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta 20, 150–157.

    Article  CAS  Google Scholar 

  • Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J.A. (2005). Absence of fyn and src causes a reeler-like phenotype. J Neurosci 25, 8578–8586.

    Article  CAS  Google Scholar 

  • Lemeer, S., and Heck, A.J. (2009). The phosphoproteomics data explosion. Curr Opin Chem Biol 13, 414–420.

    Article  CAS  Google Scholar 

  • Luo, W., Slebos, R.J., Hill, S., Li, M., Brabek, J., Amanchy, R., Chaerkady, R., Pandey, A., Ham, A.J., and Hanks, S.K. (2008). Global impact of oncogenic src on a phosphotyrosine proteome. J Proteome Res 7, 3447–3460.

    Article  CAS  Google Scholar 

  • Macek, B., Mann, M., and Olsen, J.V. (2009). Global and site-specific quantitative phosphoproteomics: Principles and applications. Annu Rev Pharmacol Toxicol 49, 199–221.

    Article  CAS  Google Scholar 

  • Manning, G., Plowman, G.D., Hunter, T., and Sudarsanam, S. (2002a). Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27, 514–520.

    Article  CAS  Google Scholar 

  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002b). The protein kinase complement of the human genome. Science 298, 1912–1934.

    Article  CAS  Google Scholar 

  • Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd., Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166.

    Article  CAS  Google Scholar 

  • Meek, S.E., Lane, W.S., and Piwnica-Worms, H. (2004). Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J Biol Chem 279, 32046–32054.

    Article  CAS  Google Scholar 

  • Mohammad, D.H., and Yaffe, M.B. (2009). 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 8, 1009–1017.

    Article  CAS  Google Scholar 

  • Nita-Lazar, A., Saito-Benz, H., and White, F.M. (2008). Quantitative phosphoproteomics by mass spectrometry: Past, present, and future. Proteomics 8, 4433–4443.

    Article  CAS  Google Scholar 

  • Obenauer, J.C., Cantley, L.C., and Yaffe, M.B. (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31, 3635–3641.

    Article  CAS  Google Scholar 

  • Olsen, J.V., Ong, S.E., and Mann, M. (2004). Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3, 608–614.

    Article  CAS  Google Scholar 

  • Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386.

    Article  CAS  Google Scholar 

  • Park, T.J., and Curran, T. (2008). Crk and crk-like play essential overlapping roles downstream of disabled-1 in the reelin pathway. J Neurosci 28, 13551–13562.

    Article  CAS  Google Scholar 

  • Pawson, T., and Kofler, M. (2009). Kinome signaling through regulated protein-protein interactions in normal and cancer cells. Curr Opin Cell Biol 21, 147–153.

    Article  CAS  Google Scholar 

  • Pawson, T., and Scott, J.D. (2005). Protein phosphorylation in signaling–50 years and counting. Trends Biochem Sci 30, 286–290.

    Article  CAS  Google Scholar 

  • Phizicky, E.M., and Fields, S. (1995). Protein-protein interactions: Methods for detection and analysis. Microbiol Rev 59, 94–123.

    CAS  Google Scholar 

  • Rappsilber, J., Ishihama, Y., and Mann, M. (2003). Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75, 663–670.

    Article  CAS  Google Scholar 

  • Rice, D.S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729.

    CAS  Google Scholar 

  • Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., et al. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203.

    Article  CAS  Google Scholar 

  • Rogers, L.D., and Foster, L.J. (2009). Phosphoproteomics–finally fulfilling the promise? Mol Biosyst 5, 1122–1129.

    Article  CAS  Google Scholar 

  • Roux, P.P., Ballif, B.A., Anjum, R., Gygi, S.P., and Blenis, J. (2004). Tumor-promoting phorbol esters and activated ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101, 13489–13494.

    Article  CAS  Google Scholar 

  • Rush, J., Moritz, A., Lee, K.A., Guo, A., Goss, V.L., Spek, E.J., Zhang, H., Zha, X.M., Polakiewicz, R.D., and Comb, M.J. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23, 94–101.

    Article  CAS  Google Scholar 

  • Sheldon, M., Rice, D.S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B.W., Cooper, J.A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733.

    Article  CAS  Google Scholar 

  • Songyang, Z., and Cantley, L.C. (1995). SH2 domain specificity determination using oriented phosphopeptide library. Methods Enzymol 254, 523–535.

    Article  CAS  Google Scholar 

  • Songyang, Z., Lu, K.P., Kwon, Y.T., Tsai, L.H., Filhol, O., Cochet, C., Brickey, D.A., Soderling, T.R., Bartleson, C., Graves, D.J., et al. (1996). A structural basis for substrate specificities of protein ser/thr kinases: Primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and erk1. Mol Cell Biol 16, 6486–6493.

    CAS  Google Scholar 

  • Swaney, D.L., Wenger, C.D., Thomson, J.A., and Coon, J.J. (2009). Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 106, 995–1000.

    Article  CAS  Google Scholar 

  • Thingholm, T.E., Jensen, O.N., and Larsen, M.R. (2009). Analytical strategies for phosphoproteomics. Proteomics 9, 1451–1468.

    Article  CAS  Google Scholar 

  • van der Geer, P., Wiley, S., Gish, G.D., and Pawson, T. (1996). The shc adaptor protein is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate protein-protein interactions. Curr Biol 6, 1435–1444.

    Article  Google Scholar 

  • Villen, J., and Gygi, S.P. (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3, 1630–1638.

    Article  Google Scholar 

  • Ware, M.L., Fox, J.W., Gonzalez, J.L., Davis, N.M., Lambert de Rouvroit, C., Russo, C.J., Chua, S.C., Jr., Goffinet, A.M., and Walsh, C.A. (1997). Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19, 239–249.

    Article  CAS  Google Scholar 

  • Wolters, D.A., Washburn, M.P., and Yates, J.R., 3rd. (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683–5690.

    Article  CAS  Google Scholar 

  • Yang, G., Li, Q., Ren, S., Lu, X., Fang, L., Zhou, W., Zhang, F., Xu, F., Zhang, Z., Zeng, R., et al. (2009). Proteomic, functional and motif-based analysis of C-terminal src kinase-interacting proteins. Proteomics 9, 4944–4961.

    Article  CAS  Google Scholar 

  • Zhai, B., Villen, J., Beausoleil, S.A., Mintseris, J., and Gygi, S.P. (2008). Phosphoproteome analysis of drosophila melanogaster embryos. J Proteome Res 7, 1675–1682.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lionel Arnaud who was a critical collaborator in the Cooper lab during the development and execution of the methodology to identify pY-Dab1-interacting proteins. We thank Jon Cooper (Fred Hutchinson Cancer Research Center) for support and discussions as well as additional members from his laboratory, particularly Abir Mukherjee, Tara Herrick and Priscilla Kronstad-O’Brien. We thank Steve Gygi (Harvard Medical School) for support and discussions, and members of his laboratory for the same, in particular, Scott Gerber, Wilhelm Haas and Sean Beausoleil. Judit Villén and Xue Li from the Gygi lab played an important role in the initial characterization and development of the SCX-IMAC methods presented here. We thank Steve Elledge (Harvard Medical School) and two members from his laboratory, Shuhei Matsuoka and Chunshui Zhou. Shuhei performed the anti-Akt phospho-substrate peptide IP from tryptic peptides and Chunshui gave helpful insights during the development of the SCX-IMAC methods and provided the tryptic yeast peptides. We thank John Blenis (Harvard Medical School) and two members of his lab, Philippe Roux and Jessie Hanrahan who assisted in the preparation of the cells for the Anti-Akt phoshpho-substrate peptide IP from chymotryptic peptides. We thank John Rush (Cell Signaling Technology) for supplying the AQUA reference peptides. The authors were supported primarily by the following grants during the work presented here and during the writing of this manuscript: NIH 5T32CA09657; NIH HG00041; NSF IOS 1021795; Vermont Genetics Network and NIH/NCRR P20RR16462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan A. Ballif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Goswami, T., Ballif, B.A. (2011). Methods for the Isolation of Phosphoproteins and Phosphopeptides for Mass Spectrometry Analysis: Toward Increased Functional Phosphoproteomics. In: Ivanov, A., Lazarev, A. (eds) Sample Preparation in Biological Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0828-0_29

Download citation

Publish with us

Policies and ethics