Transition metal catalysts for asymmetric reduction

  • J.-P. Genet

Abstract

A great number of optically active compounds contain a hydrogen atom at the stereogenic centre. As this hydrogen atom can be introduced into appropriate unsaturated precursors by hydrogénation reactions, asymmetric hydrogénation is of particular importance to access highly enantiomerically pure compounds.

Keywords

Itaconic Acid Optical Yield Rhodium Complex Ruthenium Catalyst Asymmetric Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    Kagan, H.B., in Comprehensive Organometallic Chemistry, G. Wilkinson (ed.), 1982, Pergamon. Press., 8, 463; Chem. Rev., 89, 257; (b) Pino, P. and Consiglio, G., Pure Appl. Chem., 1983, 55, 11, 1781; (c) Morrison, J.D. (ed.), Asymmetric Synthesis, 1985, Vol. 5, Academic Press, New York; (d) Bosnich, B., Asymmetric Catalysis NATO AST Series E, 1986, Vol. 103, Martinus Nijhoff, Dordercht; (e) Apsimon, J.W. and Collier, T., Tetrahedron, 1986, 42, 5157; (f) Consiglio, G. and Waymouth, R.M., Chem. Rev., 1989, 89, 257; (g) Kagan, H.B., Bull. Soc. Chim. Fr., 1988, 846, 9; (h) Blystone, S.I., Chem. Rev., 1989, 89(8), 1663; (i) Ojima, J. and Clos, N., Bastos, C, Tetrahedron, 1989, 45, 6901.Google Scholar
  2. 2. (a)
    Horner, I., Siegel, H. and Buthe, H., Angew. Chem., Int. Ed. Engl., 1968, 7(12), 942; (b) Tetrahedron Lett., 1968, 37, 4023.Google Scholar
  3. 3.
    Knowles, W.S. and Sabacky, M.J., J. Chem. Soc, Chem. Commun., 1968, 1445.Google Scholar
  4. 4.
    Dang, T.P. and Kagan, H.B., J. Chem. Soc, Chem. Commun., 1971, 481.Google Scholar
  5. 5.
    Kagan, H.B., in Asymmetric Synthesis, 1985, Vol. 5, J.D. Morrison (ed.), Academic Press, New York, p. 1.Google Scholar
  6. 6.
    Brunner, H., in Topics in Stereochemistry, 1988, Vol. 18, E.L. Eliel and S.H. Wilen, (eds), p. 541.Google Scholar
  7. 7.
    Mislow, K., et al, J. Am. Chem. Soc., 1968, 90, 4842.Google Scholar
  8. 8. (a)
    Jugé, S, Genet, J.-P, Stephan, M, Laffitte, J.A, Tetrahedron Lett., 1990, 31, 44, 6357; (b) For a recent synthesis see Corey, E.J., Chen, Z. and Tanoury, G.J., J. Am. Chem. Soc., 1993, 115, 11000.Google Scholar
  9. 9.
    Merdes, R, unpublished work, 1993, Thèse Université P.M. Curie, Paris.Google Scholar
  10. 10. (a)
    Miyashita, A., Yasuda, A., Takaya, H., Torium, K., Ito, K., Souchi, T. and Noyori, R, J. Am. Chem. Soc., 1980, 102, 7932; (b) Miyashita, A., Takaya, H., Souchi, T. and Noyori, R., Tetrahedron, 1984, 40, 8, 1245.Google Scholar
  11. 11.
    Knierzinger, A. and Schönholzer, P., Helv. Chem. Acta., 1992, 75, 1211.Google Scholar
  12. 12.
    Schmidt, R., Foricher, J., Cereghetti, M. and Schönholzer, P., Helv. Chim. Acta., 1991, 74, 370.Google Scholar
  13. 13. (a)
    Burk, M.J, Feaster, J.E. and Harlow, R.L., Organometallics, 1990, 9, 2653; (b) Burk, M.J., Feaster, J.E., Nugent, W.A. and Harlow, R.L., J. Am. Chem. Soc, 1993, 115, 10125; (c) Burk, M.J., J. Am. Chem. Soc, 1991, 113, 8518; (d) Burk, M.J, Feaster, J.E. and Harlow, R.L, Tetrahedron: Asymmetry, 1991, 2, 7, 569.Google Scholar
  14. 14. (a)
    Schrock, R.R. and Osborn, J.A, J. Am. Chem. Soc., 1971, 93, 2397; (b) Sharpley, J.R, Schrock, R.R. and Osborn, J.A, J. Am. Chem. Soc, 1969, 91, 2816.Google Scholar
  15. 15.
    Frysuk, M.D. and Bosnich, B, J. Am. Chem. Soc., 1977, 99, 6262.Google Scholar
  16. 16. (a)
    Brown, J.M, Angew. Chem., Int. Ed. Engl, 1987, 26, 190; (b) Hayashi, T, Konishi, M, Fukashima, M, Mise, T, Kagotani, M, Tojika, M. and Kumeda, M, J. Am. Chem. Soc, 1982, 104, 180.Google Scholar
  17. 17.
    James, B.R, Wang, D.K.W. and Voight, R.F, J. Chem. Soc, Chem. Cummun, 1975, 574.Google Scholar
  18. 18. (a)
    Noyori, R, Ohta, M, Hsiao, Y, Kitamura, M, Ohta, T. and Takaya, H, J. Am. Chem. Soc., 1986, 108, 7117; (b) Ohta, T, Takaya, H. and Noyori, R, Inorg. Chem., 1988, 27, 566; (c) Kitamura, M, Tokunaga, M. and Noyori, R, J. Grg. Chem., 1992, 57, 4053.Google Scholar
  19. 19.
    Ikariya, T, Ischii, Y, Kawano, H, et ai, J. Chem. Soc, Chem. Commun., 1985, 922.Google Scholar
  20. 20.
    Genet, J.P, Mallart, S, Pinel, C. and Laffitte, J.A, Tetrahedron: Asymmetry, 1991, 2, 43.Google Scholar
  21. 21.
    Genet, J.P, Mallart, S, Pinel, C, et al, Tetrahedron Lett., 1992, 33, 5343.Google Scholar
  22. 22.
    Genet, J.P, Mallart, S, Pinel, C, Juge, S. and Laffitte, J.A, Tetrahedron: Asymmetry, 1991, 2, 555.Google Scholar
  23. 23.
    Genet, J.P, Pinel, C, Ratovelomanana-Vidal, V, et al., Tetrahedron: Asymmetry, 1994, 5, 665.Google Scholar
  24. 24.
    Heiser, B, Broger, E.A. and Crameri, Y, Tetrahedron: Asymmetry, 1991, 2, 47.Google Scholar
  25. 25.
    Alcock, N.W, Brown, J.M, Rose, M. and Wienand, A, Tetrahedron: Asymmetry, 1991, 2, 47.Google Scholar
  26. 26. (a)
    Kitamura, M, Tokunaga, M, Ohkuma, T. and Noyori, R, Tetrahedron. Lett., 1991, 32, 4163; (b) Mashima, K, Kusamo, K.H, Noyori, R. and Takaya, H, J. Chem. Commun., 1989, 1208.Google Scholar
  27. 27. (a)
    Mashima, K, Hino, T. and Takaya, H, Tetrahedron. Lett., 1991, 32, 3101; (b) King, S.A., Thompson, A.S., King, A.O. and Verhoeven, T.R., J. Org. Chem., 1992, 57, 6689; (c) Fronczek, F.R, Watkins, S.E, Stahly, G, et al, Organometallics, 1993, 12, 1467; (d) James, B.R, Pacheco, A, Rettig, S.J, et al, J. Mol Cat., 1987, 41, 147; (e) Hoke, J.B, Hollis, L.S. and Stern, E.W, J. Organomet. Chem., 1993, 455, 193.Google Scholar
  28. 28.
    Deutsch, P.P. and Eisenberg, R, Chem. Rev., 1988, 88, 1147.Google Scholar
  29. 29.
    Spindler, F, Pugin, B. and Blaser, H.U, Angew Chem., Int. Ed. Engl, 1990, 29, 558.Google Scholar
  30. 30.
    Cheong Chan, Ng and Osborn, J.A, J. Am. Chem. Soc., 1990, 112, 9400.Google Scholar
  31. 31.
    Leutenegger, U, Madin, A. and Pfaltz, A, Angew Chem. Int. Ed. Engl., 1989, 101, 61.Google Scholar
  32. 32. (a)
    Knowles, W.S, Ace Chem. Res., 1983, 16, 106; (b) Klabunovskii, E.I, Russ. Chem. Rev., 1982, 51, 1103; (c) Koenig, K.E, in Asymmetric Catalysis, 1985, Vol. 5, J.E. Morrison (ed.), Academic Press, New York, p. 71; (d) Caplar, V, Comisso, G. and Sunjic, V, Synthesis, 198!, 85; (e) Dunina, V.V. and Beletskaya, LP, Zhurnal Organicheskoi Khimii, 1992, 28(9), 1547; (f) Inoguchi, K, Sakuraba, S. and Achiwa, K, Synlett, 1992, 169.Google Scholar
  33. 33. (a)
    Knowles, W.S, Sabacky, M. J. and Vineyard, B.D., J. Chem. Soc, Chem. Commun., 1972, 10; (b) Vineyard, B.D., Knowles, W.S, Sabacky, M.J, et al, J. Am. Chem. Soc, 1977, 99, 5946.Google Scholar
  34. 34. (a)
    Kagan, H.B. and Dang, T.P, J. Am. Chem. Soc., 1972, 94, 6429; (b) Dang, T.P, Poulin, J.C. and Kagan, H.B, J. Organomet. Chem., 1975, 91, 105.Google Scholar
  35. 35.
    Frysuk, M.D. and Bosnich, B, J. Am. Chem. Soc., 1978, 100, 5491.Google Scholar
  36. 36.
    Miyachita, A, Yasuda, A, Takaya, H, Noyori, R, et al, J. Am. Chem. Soc., 1980, 102, 7932.Google Scholar
  37. 37.
    Genet, J.P, Ratovelomanana-Vidal, V, Pfister, X, et al, Tetrahedron: Asymmetry, 1994, in press.Google Scholar
  38. 38.
    MacNeil, P.A., Roberts, N.K. and Bosnich, B, J. Am. Chem. Soc., 1981, 103, 2273.Google Scholar
  39. 39.
    Miyachita, A, Takaya, H, Souchi, T. and Noyori, R, Tetrahedron, 1984, 40, 1245.Google Scholar
  40. 40.
    Hayashi, T. and Kumada, M, in Fundamental Research in Homogeneous Catalysis, 1978, Vol. 2, Y. Tshii and M. Tsutsui, (eds.), p. 159.Google Scholar
  41. 41.
    Kawano, H., Ikariya, T., Ishii, Y., et al, J. Chem. Soc, Perkin Trans. 1, 1989, 1571.Google Scholar
  42. 42.
    Noyori, R., Ikeda, T., Ohkuma, T., et al, J. Am. Chem. Soc., 1989, 111, 9134.Google Scholar
  43. 43.
    Scott, J.W., Keith, D.D., Nix, G., et al, J. Org. Chem., 1981, 46, 5086.Google Scholar
  44. 44. (a)
    Brown, J.M. and Chaloner, P.A., J. Am. Chem. Soc., 1980, 102, 3040; (b) Brown, J.M. and Evans, P.L., Tetrahedron, 1988, 44(15), 4905; (c) Brown, J.M., Chemical Soc. Rev., 1993, 25.Google Scholar
  45. 45. (a)
    Meyer, D, Poulin, J.C., Kagan, H.B., et al., J. Org. Chem., 1980, 45, 4680; (b) El Baba, Y., Nuzillard, J.M., Poulin, J.C. and Kagan, H.B., Tetrahedron, 1986, 42, 3851, and references cited therein; (c) Yamagishi, T., Ikeda, S., Yatagai, M., Yamagishi, M. and Hida, M., J. Chem. Soc, Perkin Trans. 1, 1988, 1787.Google Scholar
  46. 46.
    Knowles, W.S., J. Chem. Educ., 1986, 63, 222.Google Scholar
  47. 47.
    Vocke, W., Hunel, R. and Flöther, F.U, Chemische Technik (Berlin), 1987, 39, 123.Google Scholar
  48. 48. (a)
    Nagel, V., Kinzel, E., Antrade, J. and Prescher, G., Chem. Ber., 1986, 119, 3326; (b) Nagel, U., Kinzel, E., Antrade, J. and Prescher, G, Angew. Chem. Int. Ed. Engl, 1984, 23, 435; (c) Nagel, V. and Beck, W, E.P. 0151282.Google Scholar
  49. 49.
    Fiorini, M. and Giongo, G.M., J. Mol Catal, 1979, 5, 303.Google Scholar
  50. 50.
    Halpern, J, Pure Appl. Chem., 1983, 55, 99; (b) Landis, CR. and Halpern, J, J. Am. Chem. Soc, 1987, 109, 1746; (c) Halpern, J., Asymmetric Catalysis, 1985, Vol. 5, J.D. Morrison, (ed.), Academic Press, New York, p. 41.Google Scholar
  51. 51.
    Sinou, D. and Kagan, H.B., J. Organomet. Chem., 1976, 114, 325.Google Scholar
  52. 52. (a)
    Noyori, R., Ohta, M., Hsiao, Y., et al, J. Am. Chem. Soc., 1986, 108, 7117; (b) Kitamura, M., Hsiao, Y., Noyori, R. and Takaya, H., Tetrahedron Lett., 1987, 28, 41, 4829; (c) Lubell, W.O., Kitamura, M. and Noyori, R., Tetrahedron: Asymmetry, 1991, 2, 543.Google Scholar
  53. 53.
    Kitamura, M., Hsiao, Y., Ohta, M., Noyori, R, et al, J. Org. Chem., 1994, 59, 297.Google Scholar
  54. 54. (a)
    Brown, J.M. and Chaloner, P.A., J. Chem. Soc, Chem. Commun., 1979, 613; (b) Brown, J.M., Chaloner, P.A. and Morris, G.A., J. Chem. Soc, Chem. Commun., 1983, 664.Google Scholar
  55. 55. (a)
    Aviron-Violet, P., Coleuille, Y. and Varagnat, J., J. Mol Cat., 1979, 5, 41; (b) Achiwa, K., Chem. Lett, 1978, 561.Google Scholar
  56. 56.
    Ojima, I. and Yoda, N., Tetrahedron Lett., 1980, 21, 1051.Google Scholar
  57. 57.
    Christofiel, W.C. and Vineyard, B.D., J. Am. Chem. Soc., 1979, 101, 4406.Google Scholar
  58. 58.
    Morimoto, T., Chiba, M. and Achiwa, K., Tetrahedron Lett., 1989, 30, 735.Google Scholar
  59. 59.
    Morimoto, T, Chiba, M. and Achiwa, K., Heterocycles, 1992, 33, 435.Google Scholar
  60. 60.
    Jendralla, H., Tetrahedron Lett., 1991, 31, 3671.Google Scholar
  61. 61. (a)
    Noyori, R. and Kitamura, M., Modern Synthetic Methods, 1989, R. Scheffold, (ed.), Springer Verlag, 128; (b) Noyori, R., Chem. Soc. Rev., 1989, 18, 187; (c) Noyori, R. and Takaya, H., Acc Chem. Res., 1990, 23, 345; (d) Noyori, R., Science, 1990, 248, 1194; (e) Noyori, R., Organic Synthesis in Japan Past, Present and Future, 1992, R. Noyori, (ed.), Kagaku Dozin, Tokyo, p. 301.Google Scholar
  62. 62.
    Fluka Prize ‘Reagent of year 1989’, J. Am. Chem. Soc., 111, 8.Google Scholar
  63. 63.
    Ohta, T., Takaya, H., Kitamura, M., Nagai, K. and Noyori, R, J. Org. Chem., 1987, 52, 3174.Google Scholar
  64. 64. (a)
    Saburi, M., Shao, L., Sakurai, T. and Uchida, Y., Tetrahedron Lett., 1992, 33, 51, 7877; (b) Muramatsu, H., Saburi, Y., et al, J. Chem. Soc. Chem. Commun., 1969, 768.Google Scholar
  65. 65.
    Chan, A.S.C., Chemtech, 1993, 46.Google Scholar
  66. 66.
    Pfaltz, A., Modern Synthetic Methods, 1989, Scheffold (ed.), Springer Verlag, 231.Google Scholar
  67. 67.
    Ohta, T., Takaya, H. and Noyori, R., Tetrahedron Lett., 1990, 31, 49, 7189.Google Scholar
  68. 68. (a)
    Halpern, J., Organometallics, 1991, 10, 2011; (b) Ashby, M.T. and Halpern, J., J. Am. Chem. Soc, 1991, 113, 589.Google Scholar
  69. 69. (a)
    Evans, D.A. and Morrissey, M.A., J. Am. Chem. Soc., 1984, 106, 3866; (b) Brown, J.M. and Cutting, I., J. Chem. Soc, Chem. Commun., 1985, 578; (c) Brown, J.M., Angew. Chem., Int. Ed. Engl, 1987, 26, 190; (d) Brown, J.M., Cutting, I. and James, A.P., Bull. Soc Chim. Fr., 1988, 211.Google Scholar
  70. 70. (a)
    Kasahara, I. and Noyori, R., J. Am. Chem. Soc., 1987, 109, 5, 1596; (b) Takaya, H., Ohta, T., Inone, S.I., Tokunaga, M., Kitamura, M. and Noyori, R., Org. Synth., 1993, 72, 74; (c) Kitamura, M., Nagai, K., Hsiao, Y. and Noyori, R., Tetrahedron Lett., 1990, 31, 549; (d) Kitamura, M., Kasahara, I., Manabe, K., Noyori, R. and Takaya, H., J. Org. Chem., 1988, 53, 708.Google Scholar
  71. 71. (a)
    Baker, G.L., Fritschel, S. J. and Stille, J.K., J. Org. Chem., 1981, 46, 2960; (b) Deschenaux, R. and Stille, J.K., J. Org. Chem., 1985, 50, 2299.Google Scholar
  72. 72.
    Nagel, U. and Kinzel, E., J. Chem. Soc, Chem. Commun., 1986, 1098.Google Scholar
  73. 73. (a)
    Alario, F., Amrani, Y., Coleuille, Y., Dang, T.P., Jenck, J., Morel, D. and Sinou, D., J. Chem. Soc, Chem. Commun., 1986, 202; (b) Amrani, Y., Leconte, L, Bakos, J., Toth, L, Heil, B. and Sinou, D, Organometallics, 1989, 8, 542; (c) Wan, K.T. and Davis, M.C., J. Chem. Soc, Chem. Commun., 1993, 1262.Google Scholar
  74. 74.
    Wan, K. and Davis, M.E., Tetrahedron: Asymmetry, 1993, 4, 2461.Google Scholar
  75. 75. (a)
    Dumont, W, Poulin, J.C, Dang, T.P. and Kagan, H.B., J. Am. Chem. Soc., 1973, 95, 8295; (b) Samuel, O., Couffignal, R, Lauer, M, Zang, S.Y. and Kagan, H.B., Nouv. J. Chim., 1981, 5, 15; (c) Hayashi, T., Tanaka, M. and Ogata, I., Tetrahedron Lett., 1977, 295.Google Scholar
  76. 76.
    Jenke, T. and Suss-Fink, G, J. Organometal. Chem., 1991, 405, 383.Google Scholar
  77. 77. (a)
    Halterman, R.L. and Vollhardt, K.P.C., Organometallics, 1988, 7, 883; (b) Halterman, R.L., Vollhardt, K.P.C., Welker, M.E., et al, J. Am. Chem. Soc, 1987, 109, 8105.Google Scholar
  78. 78. (a)
    Toros, S, Kollar, L, Heil, B. and Marko, L, J. Organomet. Chem., 1982, 17, 232; (b) Heil, B., Toros, S, Bakos, J. and Marko, L., J. Organomet. Chem., 1979, 175, 229; (c) Bakos, J, loth, L, Heil, B. and Marko, L, J. Organomet. Chem., 279, 1985, 23; (d) Takeda, H., Takeshi, H., Tchinami, T., Achiwa, K., et al, Tetrahedron Lett., 1989, 30, 363.Google Scholar
  79. 79.
    Hayashi, T., Katsumara, A., Konishi, M. and Kumada, M., Tetrahedron Lett., 1979, 20, 425.Google Scholar
  80. 80.
    Marki, H.P., Crameri, Y., Eigenmann, R., Krasso, A., Ramuz, H., Bernauer, K., Goodman, M. and Melmon, K.L., Helv. Chim. Acta., 1988, 71, 320.Google Scholar
  81. 81.
    Takahashi, H, Sakuraba, S, Takeda, H. and Achiwa, K, J. Am. Chem. Soc., 1990, 112, 5876.Google Scholar
  82. 82.
    Kitamura, M., Ohkuma, T., Inoue, S., Sayo, N., Kumobayashi, H., Akutagawa, S., Ohta, T., Takya, H. and Noyori, R, J. Am. Chem. Soc., 1988, 110, 629.Google Scholar
  83. 83. (a)
    Cesarotti, E., Prati, L., Pallavicini, M. and Villa, L., Tetrahedron Lett., 1991, 32, 4381; (b) Cesarotti, E., Antognazza, P., Mauri, A., Pallavicini, M. and Villa, L., Helv. Chim. Acta., 1992, 75, 2563.Google Scholar
  84. 84.
    Hatat, C, Karim, A, Kokel, N., Mortreux, A. and Petit, F, Nouv J. Chem., 1990, 14, 141.Google Scholar
  85. 85. (a)
    Ojima, H., Kogure T. and Achiwa, K., J. Chem. Soc, Chem. Commun., 1977, 428; (b) Takahashi, T., Morimoto, T. and Achiwa, K., Chem. Lett., 1987, 855.Google Scholar
  86. 86.
    Nozaki, K., Sato, N. and Takaya, H., Tetrahedron: Asymmetry, 1993, 4, 2179.Google Scholar
  87. 87. (a)
    Purko, M., Nelson, W.O. and Wood, W.A., J. Biol. Chem., 1954, 207, 51; (b) Brown, G.M. and Reynolds, J.J., Annu. Rev. Biochem., 1963, 32, 419.Google Scholar
  88. 88. (a)
    Takahashi, H., Hattori, M., Chiba, M., Morimoto, T. and Achiwa, K., Tetrahedron Lett., 1986, 27, 4477; (b) Morimoto, T, Takahashi, H. and Achiwa, K., Chem. Lett., 1986, 12, 2061; (c) Achiwa, K., Heterocycles, 1978, 9, 1539.Google Scholar
  89. 89.
    Broger, E. and Crameri, Y., 1985, E.P. 0158875 and E.P. 0218970.Google Scholar
  90. 90.
    Roucoux, A., Agbossou, F., Mortreux, A. and Petit, F., Tetrahedron: Asymmetry, 1993, 4, 2279.Google Scholar
  91. 91. (a)
    Noyori, R., Ohkuma, T., Kitamura, M, et al., J. Am. Chem. Soc., 1987, 109, 5856; (b) Kimatura, M., Tokunaga, M., Ohkuma, T. and Noyori, R., Org. Synth., 1992, 71, 1.Google Scholar
  92. 92.
    Taber, D.F. and Silverberg, L.J., Tetrahedron Lett., 1991, 32, 34, 4227.Google Scholar
  93. 93.
    Kitamura, M., Ohkuma, T., Takaya, H. and Noyori, R., Tetrahedron Lett., 1989, 29, 13, 1555.Google Scholar
  94. 94.
    Jones, A.B., Yamaguchi, M., Patten, A., Danishefsky, S.J., Ragan, J.A., Smith, D.B. and Schreiber, S.L., J. Org. Chem., 1989, 54, 17.Google Scholar
  95. 95.
    Taber, D.F, Silverberg, L. J. and Robinson, E.D, J. Am. Chem. Soc., 1991, 113, 6339.Google Scholar
  96. 96.
    Wovkulich, P.M., Shankaran, K, Kiegiel, J. and Uskokovic, M.R., J. Org. Chem., 1993, 58, 832.Google Scholar
  97. 97.
    Nishi, T, Kitamuma, M, Ohkuma, T. and Noyori, R, Tetrahedron Lett., 1988, 29, 48, 6327.Google Scholar
  98. 98.
    Rychnovsky, S.D. and Hoye, R.C, J. Am. Chem. Soc., 1994, 116, 1753.Google Scholar
  99. 99.
    Noyori, R, Ikeda, T, Ohkuma, T, et al., J. Am. Chem. Soc., 1989, 111, 9134.Google Scholar
  100. 100.
    Genet, J.P, Mallart, S. and Jugé, S, Fr. Pat. 8911159, 1989.Google Scholar
  101. 101.
    Schmidt, U, Leitenberger, V, Griesser, H, Schmidt, J. and Meyer, R, Synthesis, 1992, 1248.Google Scholar
  102. 102. (a)
    Kitamura, M, Ohkuma, T, Tokunaga, M. and Noyori, R, Tetrahedron: Asymmetry, 1990, 1, 1; (b) M. Kitamura, M. Tokunaga and R. Noyori, (1993), J. Am. Chem. Soc, 1993, 115, 144.Google Scholar
  103. 103.
    Genet, J.P, Pfister, X, Ratovelomanana-Vidal, V, Pinel, C. and Lafftte, J.A, Tetrahedron Lett., 1994, 35, 26, 4559.Google Scholar
  104. 104.
    Fukada, N, Mashima, Y, Matsumura, Y. and Takaya, H, Tetrahedron Lett., 1990, 31, 6327.Google Scholar
  105. 105. (a)
    Mashima, K, Matsumura, Y.I, Kusano, K.H, et al., J. Chem. Soc, Chem. Commun., 1991, 9, 609; (b) Nishi, T, Kitamura, M, Ohkuma, T. and Noyori, R, Tetrahedron Lett., 1988, 29, 6327.Google Scholar
  106. 106. (a)
    Kagan, H.B, Langlois, N. and Dang, T.P, J. Organomet. Chem., 1975, 279, 283; (b) Levi, A., Modena, G. and Scorrano, G., J. Chem. Soc, Chem. Commun., 1975, 6; (c) Vastag, S, Heil, B., Toros, S. and Marko, L., Transition Met. Chem., 1977, 2, 58; (d) Vatsag, S, Bakos, J, Toros, S, Takach. N.E., King, R.B., Heil, B. and Marko, L., J. Mol. CataL, 1984, 22, 283; (e) Bakos, J., Toth, L, Heil, B. and Marko, K, J. Organomet. Chem., 1985, 279, 23.Google Scholar
  107. 107.
    Kang, G.J., Cullen, W.R, Fryzuk, M.D., James, B.R. and Kutney, J.P., J. Chem. Soc, Chem. Commun., 1988, 1466.Google Scholar
  108. 108.
    Burk, M. J. and Feaster, J.E, J. Am. Chem. Soc., 1992, 114, 6267.Google Scholar
  109. 109.
    Becalski, A.G., Cullen, W.R, Fryzuk, M.D, James, B.R, Kang, G. J. and Rettig, S.J, Inorg. Chem., 1991, 30, 5002.Google Scholar
  110. 110.
    Bakos, J, Oros, Z.A, Heil, B, Laghmari, M, Lhoste, P. and Sinou, D, J. Chem. Soc, Chem. Commun., 1991, 1684.Google Scholar
  111. 111.
    Oppolzer, W, Wills, M, Starkeman, C. and Bernardinelli, G, Tetrahedron Lett., 1990, 31, 4117.Google Scholar
  112. 112.
    Willoughby, C.A. and Buchwald, S.L, J. Am. Chem. Soc., 1992, 114, 7562.Google Scholar
  113. 113.
    Bolm, C, Angew. Chem., Int. Ed. Engl., 1993, 32, 232.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • J.-P. Genet

There are no affiliations available

Personalised recommendations