Advanced Asymmetric Synthesis pp 111-125 | Cite as
Asymmetric deprotonation reactions using enantiopure lithium amide bases
Abstract
Lithium diisopropylamide (LDA), one of a family of dialkyllithium amides, is firmly established as the most important strong base used in organic synthesis. Bearing in mind the significance of such bases in deprotonation reactions of weak carbon acids, especially carbonyl compounds, sulphones and sulphoxides, and the tremendous effort that has been applied to the development of asymmetric reactions, it is surprising that asymmetric deprotonation chemistry has been so little developed. Indeed, prior to the report in 1986 of the asymmetric deprotonation of cis-2, 6-dimethylcyclohexanone using enantiopure lithium amide bases*, only a handful of reports concerning the chemistry of these reagents had appeared. Since that time, enantiopure lithium amides have been developed extensively as reagents for organic synthesis, both as powerful bases and as chiral nucleophiles. This brief review will focus on reactions of enantiopure lithium amides as bases in which the deprotonation reaction is the key asymmetric step and will deal primarily with reactions of ketones.1†
Keywords
Aldol Reaction Cyclic Ketone Mixed Aggregate Asymmetric Induction Phenyl GlycinePreview
Unable to display preview. Download preview PDF.
References
- 1. (a)Review: Cox, P. J. and Simpkins, N.S., Tetrahedron: Asymmetry, 1991, 2, 1; (b) Bunnage, M.E., Burke, A.J., Davies, S.G. and Goodwin, C.J., Tetrahedron: Asymmetry, 1994, 5, 203; (c) Juaristi, E., Beck, A.K., Hansen, J., Matt, T., Mukhopadhyay, T., Simson, M. and Seebach, D., Synthesis, 1993, 1271.CrossRefGoogle Scholar
- 2.Simpkins, N.S., J. Chem. Soc., Chem. Commun., 1986, 88; Cousins, R.P.C. and Simpkins, N.S., Tetrahedron Lett., 1989, 30, 7241; Cain, C.M, Cousins, R.P.C, Coumbarides, G. and Simpkins, N.S, Tetrahedron, 1990, 46, 523.Google Scholar
- 3.Shirai, R, Tanaka, M. and Koga, K., J. Am. Chem. Soc., 1986, 108, 543.CrossRefGoogle Scholar
- 4.Majewski, M. and Gleave, D.M., J. Org. Chem., 1992, 57, 3599.CrossRefGoogle Scholar
- 5.Hasegawa, Y, Kawasaki, H. and Koga, K., Tetrahedron Lett., 1993, 34, 1963.CrossRefGoogle Scholar
- 6.Aoki, K., Nakajima, M, Tomioka, K. and Koga, K., Chem. Pharm. Bull., 1993, 41, 994.CrossRefGoogle Scholar
- 7.Aoki, K., Noguchi, H., Tomioka, K. and Koga, K., Tetrahedron Lett., 1993, 34, 5105.CrossRefGoogle Scholar
- 8.Edwards, A.S, Hockey, S., Mair, F.S., Raithby, P.R. and Snaith, R., J. Org. Chem., 1993, 58, 6942.CrossRefGoogle Scholar
- 9.Sato, D., Kawasaki, H., Shimada, I., Arata, Y., Okamura, K., Date, T. and Koga, K., J. Am. Chem. Soc., 1992, 114, 761.CrossRefGoogle Scholar
- 10.Greene, A.E, Serra, A.A., Barreiro, E. J. and Costa, P.R.R, J. Org. Chem., 1987, 52, 1170.CrossRefGoogle Scholar
- 11.Cain, C.M. and Simpkins, N.S, Tetrahedron Lett., 1987, 28, 3723.CrossRefGoogle Scholar
- 12.Underiner, T.L. and Paquette, L.A, J. Org. Chem., 1992, 57, 5438.CrossRefGoogle Scholar
- 13.Honda, T, Kimura, N. and Tsubuki, M, Tetrahedron: Asymmetry, 1993, 4, 1475; Honda, T. and Kimura, N, J. Chem. Soc., Chem. Commun., 1994, 77.CrossRefGoogle Scholar
- 14.Izawa, H, Shirai, R, Kawasaki, H, Kim, H. and Koga, K., Tetrahedron Lett., 1989, 30, 7221.CrossRefGoogle Scholar
- 15.Bunn, B.J, Cox, P. J. and Simpkins, N.S, Tetrahedron, 1993, 49, 207.CrossRefGoogle Scholar
- 16.Simpkins, N.S, Chem. Soc Rev., 1990, 19, 335.CrossRefGoogle Scholar
- 17.Majewski, M. and Zheng, G-Z, Can. J. Chem., 1992, 70, 2618.CrossRefGoogle Scholar
- 18.Momose, T, Toyooka, N, Seki, S. and Hirai, Y., Chem. Pharm. Bull., 1990, 38, 2072; Momose, T, Toyooka, N. and Hirai, Y, Chem. Lett., 1990, 1319.CrossRefGoogle Scholar
- 19.Bunn, B. J. and Simpkins, N.S, J. Org. Chem., 1993, 58, 533; Bunn, B.J, Simpkins, N.S, Spavold, Z. and Crimmin, M.J., J. Chem. Soc., Perkin Trans. 1, 1993, 3113.CrossRefGoogle Scholar
- 20.Honda, T, Kimura, N. and Tsubuki, M, Tetrahedron: Asymmetry, 1993, 4, 21.CrossRefGoogle Scholar
- 21.Leonerd, J, Hewitt, J.D, Ouali, D, Rahman, S.K., Simpson, S. J. and Newton, R.F, Tetrahedron: Asymmetry, 1990, 1, 699.CrossRefGoogle Scholar
- 22.Cousins, R.P.C. and Simpkins, N.S, unpublished results.Google Scholar
- 23.Wild, H. and Born, L., Angew. Chem., Int. Ed. Engl., 1991, 30, 1685.CrossRefGoogle Scholar
- 24.Willard, P.G. and Liu, Q-Y., J. Am. Chem. Soc., 1993, 115, 3380.CrossRefGoogle Scholar
- 25.Sobukawa, M, Nakajima, M. and Koga, K., Tetrahedron: Asymmetry, 1990, 1, 295.CrossRefGoogle Scholar
- 26.Sobukawa, M. and Koga, K, Tetrahedron Lett., 1993, 34, 5101.CrossRefGoogle Scholar
- 27.Bambridge, K, Simpkins, N.S. and Clark, B.P, Tetrahedron Lett., 1992, 33, 8141.CrossRefGoogle Scholar
- 28.Grogan, G, Roberts, S.M. and Willetts, A.J, J. Chem. Soc., Chem. Commun., 1993, 699.Google Scholar
- 29.Kim, H, Kawasaki, H, Nakayima, M. and Koga, K, Tetrahedron Lett., 1989, 30, 6537.CrossRefGoogle Scholar
- 30.Coggins, P. and Simpkins, N.S, Synlett, 1991, 515.Google Scholar
- 31.Coggins, P. and Simpkins, N.S, Synlett, 1992, 313.Google Scholar
- 32. (a)Armer, R, Begley, M.J., Cox, P.J, Persad, A. and Simpkins, N.S, J. Chem. Soc., Perkin Trans. 1, 1993, 3099; (b) Maercker, A., Schuhmacher, R., Buchmeier, W. and Lutz, H.D., Chem. Ber., 1991, 124, 2489.CrossRefGoogle Scholar
- 33.Price, D.A., Simpkins, N.S, MacLeod, A.M. and Watt, A.P., J. Org. Chem., 1994, in press.Google Scholar
- 34. (a)Milne, D. and Murphy, P.J., J. Chem. Soc., Chem. Commun., 1993, 884; (b) Bhuniya, D. and Singh, V.K., Synth. Commun., 1994, 24, 375.Google Scholar
- 35.Marshall, J.A. and Lebreton, J., J. Am. Chem. Soc., 1988, 110, 2925.CrossRefGoogle Scholar
- 36.Duhamel, L., Ravard, A, Plaquevent, J.C., Plé, G. and Davoust, D., Bull. Soc. Chim. Fr., 1990, 127, 787; Duhamel, L., Ravard, A. and Plaquevent, J-C., Tetrahedron: Asymmetry, 1990, 1, 347.Google Scholar