Skip to main content
  • 523 Accesses

Abstract

By 2050, 90% of the planet’s population will reside in the developing countries of the southern hemisphere (Brink et al. 1998). Achieving global food security necessitates a doubling of food production in the next 50 years (James, 1997). While farmers from developed countries benefit from massive financial subsidies and investment, aid directed to developing country agriculture is pitifully small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adipala, E., Warren, H.L., Epieru, G., Takan, J.P., Khyamanywa, S., and Willson, H. 1998. Comparative performance of cv Igola-1 and other local groundnut cultivars for the control of rosette disease. <http://www.ag.vt.edu/ipmcrs/meetings/symp98/abstracts1.html>

  • Ahohuendo, A.C., and Sarkar, S. 1995. Partial control of the spread of African cassava mosaic virus in Benin by intercropping. Zeit. Pfanzen. Pfanzen. 102: 249–256.

    Google Scholar 

  • Akano, A.O., Dixon, A.G.O., Mba, C., Barrera, E., and Fregene, M. 2002. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor. appl. Gen. Published online. DOI10. 1007/s00122-002-0891-7.

    Google Scholar 

  • Anderson, J.M., Palukaitis, P., and Zaitlin, M. 1992. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc. Nat. Acad. Sci. USA 89: 8759–8763.

    Google Scholar 

  • Antignus, Y., Nestle, D., Cohen, S., and Lapidot, M. 2001. Ultraviolet-deficient greenhouse environment affects whitefly attraction and flight behavior. Env. Entomol. 30: 394–399.

    Google Scholar 

  • Audy, P., Palukaitis, P., Slack, S., and Zaitlin, M. 1994. Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol. Plant-Microbe Interact. 7: 528–530.

    Google Scholar 

  • Barker, H., and Harrison, B.D. 1986. Restricted distribution of potato leafroll virus antigen in resistant potato genotypes and its effect on transmission of the virus by aphids. Ann. appl. Biol. 109: 595–604.

    Google Scholar 

  • Barrow, M.R. 1992. Development of maize hybrids resistant to maize streak virus. Crop Prot. 11: 267–271.

    Google Scholar 

  • Baulcombe, D. 1994. Replicase-mediated resistance: A novel type of virus resistance in transgenic plants. Trends Micro. 2: 60–63.

    Google Scholar 

  • Bol, J.K., and van Kan, J.A.L. 1988. The synthesis and possible functions of virus-induced proteins in plants. Microbiol. Sci. 5: 47–52.

    Google Scholar 

  • Braun, C.J., and Hemenway, C.L. 1992. Expression of amino-terminal portion of full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell 4: 735–744.

    Google Scholar 

  • Brink, J.A., Woodward, B.R., and DaSilva, E.J. 1998. Plant biotechnology: a tool for development in Africa. Electronic J. Biotechnol. ISSN: 0717-3458, 1: 1–10.

    Google Scholar 

  • Brown, J.K. 1994. Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worldwide. FAO Plant Prot. Bull. 42: 3–32.

    Google Scholar 

  • Buddenhagen, I.W. 1983. Crop improvement in relation to virus diseases and their epidemiology. In: Plant virus epidemiology. R.T. Plumb and J.M. Thresh (eds). Blackwell, Oxford. pp. 25–37.

    Google Scholar 

  • Caranta, C., Pflieger, S., Lefebvre, V., Daubèze, A.M., Thabuis, A., and Palloix, A. 2002. QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper. Theor. appl. Gen. online. DOI 10. 1007/s001220100753, 104: 586–591.

    Google Scholar 

  • Cassells, A.C., and Long, R.D. 1980. The regeneration of virus-free plants from cucumber mosaic virus and potato virus Y infected tobacco explants cultured in the presence of virazole. Z. Naturforschung 35c: 350–351.

    Google Scholar 

  • Chatterji A., Padidam, M., Beachy R.N., and Fauquet C.M. 1999. Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Dehli. J. Virol. 73: 5481–5489.

    Google Scholar 

  • Cohen, S., and Antignus, Y. 1994. Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. Adv. Dis. Vector Res. 10: 259–288.

    Google Scholar 

  • Dabrowski, Z.T. 1987. Cicadulina ghaurii (Hem., Euscelidae): Distribution, biology and maize streak virus (MSV) transmission. J. appl. Entomol. 103: 489–496.

    Google Scholar 

  • De Haan, P., Gielsen, J. JL., Prins, M., Wijkamp, I.G., van Schepen, A., Peters, D., Van Grinsven, M.Q.J.M., and Goldbach, R. 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 10: 1133–1137.

    Google Scholar 

  • Deng, D., Otim-Nape, G.W., Sangaré, A., Ogwal, S., Beachy, R.N., and Fauquet, C.M. 1997. Presence of a new virus closely related to East African cassava mosaic geminivirus, associated with cassava mosaic outbreak in Uganda. Afr. J. Root Tuber Crops 2: 23–28.

    Google Scholar 

  • Efron, Y., Kim, S.K., Fajesmisin, J.M., Mareck, J.H., Tang, C.Y., Dabrowski, Z.T., Rossel, H. Thottappilly, G., and Buddenhagen, I.W. 1989. Breeding for resistance to maize streak virus: a multidisciplinary team approach. Plant Breeding 103: 1–36.

    Google Scholar 

  • Etienne, J., and Rat, B. 1973. Le stripe: Une maladie importante du mais a la Reunion. Agro. Trop. 28: 11–17.

    Google Scholar 

  • Fargette, D., and Fauquet, C.M. 1988. A preliminary study on the influence of intercropping maize and cassava on the spread of African cassava mosaic by whiteflies. Ann. appl. Biol. 17: 195–202.

    Google Scholar 

  • Fargette, D., Fauquet, C.M., and Thresh, J.M. 1994. Analysis and modeling of the temporal spread of African cassava mosaic virus and implications for disease control. Afr. Crop Sci. J. 2: 449–458.

    Google Scholar 

  • Fargette, D., Fauquet, C., Grenier, E., and Thresh, J.M. 1990. The spread of African cassava mosaic virus into and within cassava fields. J. Phytopath. 130: 289–302.

    Google Scholar 

  • Fargette, D., Thouvenel, J.-C., and Fauquet, C. 1987. Virus content and symptom expression of cassava leaves infected by African cassava mosaic virus. Ann. appl. Biol. 110: 65–73.

    Google Scholar 

  • Fargette, D., Pinel, A., Halimi, H., Brugidou, C., Fauquet, C., and Van Regenmortel, M. 2002. Comparison of molecular and immunological typing of isolates of Rice yellow mottle virus. Arch. Virol. 147: 583–596.

    Google Scholar 

  • Fauquet, C.M., and Stanley, J. 2003. Geminivirus classification and nomenclature; progress, achievements and problems. Ann. appl. Biol. 142: 165–189.

    Google Scholar 

  • Fauquet, C.M., Maxwell, D.P., Gronenborn, B., and Stanley, J. 2000. Revised proposal for naming geminiviruses. Arch. Virol. 145: 1743–1761.

    Google Scholar 

  • Fereres, A. 2000. Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Res. 71: 221–231.

    Google Scholar 

  • Fielding, J. 1933. Field experimental work on rotation crops. In: Empire Cotton Growing Assoc. Progr. Rep. 1931–1932. pp. 10–14.

    Google Scholar 

  • Fondong, V., Pita, J.S., Rey, M.E.C., de Kochko, A., Beachy, R.N., and Fauquet, C.M. 2000. Evidence of synergism between African cassava mosaic virus and the new double recombinant geminivirus infecting cassava in Cameroon. J. Gen. Virol. 81: 287–297.

    Google Scholar 

  • Fondong, V.N., Thresh, J.M., and Zok, S. 2002. Spatial and temporal spread of cassava mosaic virus disease in cassava grown alone and when intercropped with maize and/or cowpea. J. Phytopathol. 150: 365–374.

    Google Scholar 

  • Fourie, A.P., and Pieenar, J.H. 1983. Breeding for resistance to maize streak virus: A report on the vaal Harts breeding programme. Tech. Commun.-S. Afr. Dept. Agric. Pretoria. The Department 182: 41–50.

    Google Scholar 

  • Fregene, M., Angel, F., Gomez, R., Rodriguez F., Chavariaga, P., Roca, W., Tohme, J. and Borniabale, M. 1997. A molecular genetic map of cassava (Manihot esculenta Crantz). Theor. appl. Gen. 95: 431–441.

    Google Scholar 

  • Fregene, M., Bernal, A., Duque, M., Dixon, A., and Tohme, J. 2000. AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor. appl. Gen 100: 678–685.

    Google Scholar 

  • Friedmann, M., Lapidot, M., Cohen, S., and Pilowsky, M. 1998. A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J. Am. Society Hort. Sci. 123: 1004–1007.

    Google Scholar 

  • Frischmuth, T., and Stanley, J. 1991. African cassava mosaic virus DI DNA interferes with the replication of both genomic components. Virology 183: 539–544.

    Google Scholar 

  • Gal, S., Pisan, B., Hohn, T., Grimsley, N., and Hohn, B. 1992. Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology 197: 525–533.

    Google Scholar 

  • George, E. 1993. Plant progagation by tissue culture, Part 1, The Technology. (2nd ed.). pp574.

    Google Scholar 

  • Gibson, R.W., Jeremiah, S.C., Aritua, V., Msabaha R.P., Mpembe, I., and Ndunguru, J. 2000. Sweet potato virus disease in Sub-Sahara Africa: evidence that neglect of seedlings in the traditional farming system hinders the development of superior resistance landraces. J. Phytopathol. 148: 441–447.

    Google Scholar 

  • Golemboski, D.B., Lomonossoff, G.P., and Zaitlin, M. 1990. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Nat. Acad. Sci. USA 87: 6311–6315.

    Google Scholar 

  • Gonsalves, D. 2002. Coat protein transgenic papaya: “acquired” immunity for controlling papaya ringspot virus. Curr. Top. Microbiol. Immunol. 266: 73–83.

    Google Scholar 

  • Gorter, G.J.M.A. 1959. Breeding maize for resistance to streak. Euphytica 8: 234–240.

    Google Scholar 

  • Hahn, S.K, and Howland, A.K. 1972. Breeding for resistance to cassava mosaic. In: IITA Proceedings of the Cassava Mosaic Workshop. S.K. Hahn (ed), Ibadan, Nigeria. pp. 4–7.

    Google Scholar 

  • Hahn, S.K., Terry E.R., and Leuschner, K. 1980. Cassava breeding for resistance to cassava mosaic disease. Euphytica 29: 673–683.

    Google Scholar 

  • Hanson, P.M., Bernacchi, D., Green, S., Tanksley, S.D., Venkataramappa, M., Padmaja, A.S., Chen, H., Kuo, G., Fang, D., and Chen, J. 2000. Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Am. Society Horti. Sci. 125: 15–20.

    Google Scholar 

  • Hayakawa, T., Zhu, Y., Itoh, K. Kimura, Y., Izawa, T., Shimamoto, K., and Toriyama S. 1992. Genetically engineered rice resistance to rice stripe virus, an insect-transmitted virus. Proc. Nat. Acad. Sci.. USA 89: 9865–9869.

    Google Scholar 

  • Hemenway, C. Fang, R-X., Kaniewski, W., Chua, N-H., and Tumer, N. 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7: 1273–1280.

    Google Scholar 

  • Hibino, H., Tiongco, E.R., Cabunagan, R.C., and Flores, Z.M. 1987. Resistance to rice tungro-associated viruses in rice under experimental and natural conditions. Phytopathology 77: 871–875.

    Google Scholar 

  • Hilje, L., Costa, H.S., and Stansly, P.A. 2001. Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Protect. 20: 801–812.

    Google Scholar 

  • Hong, Y., and Stanley, J. 1995. Regulation of African cassava mosaic virus complementarysense gene expression by N-terminal sequences of the replication-associated protein AC1. J. Gen. Virol. 76: 2415–2422.

    Google Scholar 

  • Huet, H., Mahendra, S., Wang, J., Sivamani, E., Ong, C.A., Chen, L., de Kochko, A., Beachy, R.N., and Fauquet, C. 1999. Near immunity to Rice tungro spherical virus achieved in rice by a replicase-mediated resistance strategy. Phytopathology 89: 1022–1027.

    Google Scholar 

  • Inoue, H., and Ruay-Aree, S. 1977. Bionomics of green rice leafhopper and epidemics of yellow orange leaf virus diseases in Thailand. Trop. Agri. Res. Ser. 10: 117–121.

    Google Scholar 

  • James, C. 1997. Progressing public-private sector partnership in International Agriculture Research and Development. In: ISAAA Briefs 4: 1–32.

    Google Scholar 

  • Jennings, D.L. 1976. Cassava Manihot esculenta (Euphorbiacea). In: Cultivated crops. J. Harlan (ed). Longman, London. pp 81–84.

    Google Scholar 

  • Johnson, C.S., and Main, C.E. 1983. Yield/quality tradeoffs of tobacco mosaic virus-resistant tobacco cultivars in relation to disease management. Plant Dis. 67: 886–890.

    Google Scholar 

  • Kallo, G., and Banerjee, M.K. 1990. Transfer of Tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breeding 105: 156–159.

    Google Scholar 

  • Kaniewski, W., Lawson, C., Loveless, J., Thomas, P. Mowry, T., Reed, G., Mistky, T., Zalewski, J., and Muskopf, Y. 1994. Expression of potato leafroll virus (PLRV) replicase genes in Russet Burbank potatoes provide immunity to PLRV. In: Proceed. 3rd EFPP Conference, M. Manka, (ed), J. Phytopathol. pp. 289–292.

    Google Scholar 

  • Kim, S.K., Efron, Y., Fajesmisin, J. M., and Buddenhagen, I.W. 1989. Mode of gene action for resistance in maize to Maize streak virus. Crop Sci. 29: 890–894.

    Google Scholar 

  • Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., and Pilowsky, M. 1997. Comparison of resistance level to Tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81: 1425–1428.

    Google Scholar 

  • Lapidot, M., and Friedmann, M. 2002. Breeding for resistance to whitefly-transmitted geminiviruses. Ann. appl. Biol. 140: 109–127.

    Google Scholar 

  • Lei, J.D., and Agrio, G.N. 1986. Mechanisms of resistance in corn to maize dwarf mosaic virus. Phytopathology 76: 1034–1040.

    Google Scholar 

  • Li, Q., Ryu, K.H., and Palukaitis, P. 2001. Cucumber mosaic virus-plant interactions: Identification of 3a protein sequences affecting infectivity, cell-to-cell movement, and long-distance movement. Mol. Plant-Microbe Interact. 14: 378–385.

    Google Scholar 

  • Loesch-Fries, L.S., Merlo, D., Sinnen, T., Burshop, L., Hill, K., Krahn, K., Jarvis, N., Nelson, S., and Halk, E. 1987. Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J. 6: 1845–1851.

    Google Scholar 

  • Mansoor, S., Briddon, R. W., Zafar, Y., and Stanley, J. 2003. Geminivirus disease complexes: an emerging threat. Trends Plant Sci. 8: 128–134.

    Google Scholar 

  • Mansoor, S., Khan S.H., Bashir, A., Saeed M., Zafar Y., Malik K.A., Briddon R., Stanley J. and Markham P.G. 1999. Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259: 190–199.

    Google Scholar 

  • Manwan, I., Sama, S., and Rizvi, S.A. 1985. Use of varietal rotation in the management of tungro disease in Indonesia. Indonesian Agric. Res. Develop. J. 7: 43–48.

    Google Scholar 

  • Mesfin, T., Bosque-Perez, N.A., Buddenhagen, I.W., Thottappilly, G., and Olojede, S. O. 1992. Studies of maize streak virus isolates from grass and cereal hosts in Nigeria. Plant Dis. 76: 789–795.

    Google Scholar 

  • Mwanga, R.O.M., p’Obwoya, C.N.O., Otim-Nape, G.W., and Odongo, B. 1991. Sweetpotato improvement in Uganda. In: The Role of Root Crops in Regional Food Security and Sustainable Agriculture. Proc. East. South. Afr. Regional Root Crops Workshop 4th. N. Alvarez and R. Asiedu, (Eds). IITA, Ibadan, Nigeria. pp. 59–67.

    Google Scholar 

  • Namba, S., Ling, K., Gonsalves, C., Gonsalves, D., and Slightom, J.L. 1991. Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107: 181–188.

    Google Scholar 

  • Ndunguru, J. 2002. Disease hampers bean production. Agriforum Newsletter 19: 11.

    Google Scholar 

  • Ndunguru, J., and Kapooria, R. G. 1997. Detection of cucumber mosaic virus in vegetables and herbs in Zambia. Afr. Pl. Protect. 3: 57–58.

    Google Scholar 

  • Ndunguru, J., and Kapooria, R.G. 1999. Identification and incidence of virus diseases of capsicum annum in the Lusaka Province of Zambia. EPPO Bull. 29: 183–189.

    Google Scholar 

  • Ndunguru, J., and Kapooria, R.G. 2000. The Rrole of non-capsicum hosts in the ecology of Alfalfa mosaic alfamovirus in pepper growing areas of Lusaka Province, Zambia. J. Myco. Pl. Pathol. 30: 11–14.

    Google Scholar 

  • Ndunguru, J., and Rajabu, C.A. 2002. Papaya ring spot virus disease in the Lake Victoria basin. Trop. Sci. 42: 11–16.

    Google Scholar 

  • Nelson, R.S., McCormick, S.M., Delanney, X., Dube, P., Layton, J., Anderson, E.J., Kaniewska, M., Proksch, R.K., Horsch, R.B., Rogers, S.G., Fraley, R.T., and Beachy, R.N. 1988. Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Bio/Technology 6: 403–409.

    Google Scholar 

  • Otim-Nape, G.W., Bua, A., Baguma, Y., and Thresh, J.M. 1997. Epidemics of the severe cassava mosaic virus in Uganda and efforts to control it. Afr. J. Root Tuber Crops 2: 42–43.

    Google Scholar 

  • Padidam, M., Beachy R.N., and Fauquet, C.M. 1999a. A phage single-stranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. J. Virol. 73: 1609–1616.

    Google Scholar 

  • Padidam, M., Sawyer, S., and Fauquet C.M. 1999b. Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218–225.

    Google Scholar 

  • Palumbo, J.C., Horowitz, A.R., and Prabhaker, N. 2001. Insecticidal control and resistance management for Bemisia tabaci. Crop Protect. 20: 739–766.

    Google Scholar 

  • Perlak, F. Kaniewski, W., Lawson, C., Vincent, M., and Feldman, J. 1994. Genetically improved potatoes: their potential role in integrated pest management. In: Proc. 3rd EFPP Conference, M. Manka (ed). J. Phytopathol. pp 451–454.

    Google Scholar 

  • Pico, B., Diez, M.J., and Nuez, F. 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus — a review. Scienta Hortic 67: 151–196.

    Google Scholar 

  • Pico, B., Ferriol, M., Diez, M.J., and Nuez, F. 1999. Developing tomato breeding lines resistant to tomato yellow leaf curl virus. Plant Breeding 118: 537–542.

    Google Scholar 

  • Pilowsky, M., and Cohen, S. 1990. Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis. 74: 248–250.

    Google Scholar 

  • Pinto, Y.M., Kok, R. A., and Baulcombe, D.C. 1999. Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nature Biotechnology 17: 702–707.

    Google Scholar 

  • Pita, J.S., Fondong, V.N., Sangaré, A., Otim-Nape, G.W., Ogwal, S., and Fauquet, C.M. 2001. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82: 655–665.

    Google Scholar 

  • Polston, J.E., McGovern, R.J., and Brown, L.G. 1999. Introduction of Tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis. 83: 984–988.

    Google Scholar 

  • Ponz, F., and Bruening, G. 1986. Mechanisms of resistance to plants viruses. Annu. Rev. Phytopathol. 24: 355–381.

    Google Scholar 

  • Pooggin, M. Shivaprasad, P.V., Veluthambi, K., and Hohn, T. 2003. RNAi targeting of DNA virus in plants. Nature Biotechnology 21: 131–132.

    Google Scholar 

  • Powell-Abel, P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., and Beachy, R.N. 1986. Delay of disease development in transgenic plants that express the tobacco virus coat protein gene. Science 232: 738–743.

    Google Scholar 

  • Quedema, H.D., Gonsalves, D., and Slightom, J.L. 1991. Expression of coat protein gene from cucumber mosaic virus strain C in tobacco: Protection against infections by CMV strains transmitted mechanically or by aphids. Phytopathology 81: 794–802.

    Google Scholar 

  • Rom, M., Antignus, Y., Gidoni, D., Pilowsky, M., and Cohen, S. 1993. Accumulation of tomato yellow leaf curl virus DNA in tolerant and susceptible tomato lines. Plant Dis. 77:253–257.

    Google Scholar 

  • Rose, D.J.W. 1978. Epidemiology of maize streak disease. Annu. Rev. Entomol. 23: 259–282.

    Google Scholar 

  • Rose, F.M. 1938. Rotation crops. In: Empire Cotton Growing Assoc. Progr. Rep. 1939-1940. pp. 21–25.

    Google Scholar 

  • Rybicki, E.P., and Pietersen G. 1999. Plant virus disease problems in the developing world. Adv. Virus Res. 53: 127–175.

    Google Scholar 

  • Sanders, P.R., Sammons, B., Kaniewski, W., Haley, L., Layton, J., Lavallee, B.J., Delannay, X., and Tumer, N.E. 1992. Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology 82: 683–690.

    Google Scholar 

  • Sangaré, A., Deng, D., Fauquet, C.M., and Beachy R.N. 1999. Resistance to African cassava mosaic virus conferred by a mutant of the putative NTP-binding domain of the Rep gene (AC1) in Nicotiana benthamiana. Mol. Biol. Rep. 5: 95–102.

    Google Scholar 

  • Satapathy, M.K. 1998. Chemical control of insect and nematode vectors of plant viruses. In: Plant Virus Disease Control. (eds) A. Hadidi, R.K. Khetarpal and H. Koganezawa, APS Press, St. Paul, MN, USA. pp. 188–195.

    Google Scholar 

  • Schoelz, J.E., and Wintermantel, W.M. 1993. Expansion of viral hosts range through complementation and recombination in transgenic plants. Plant Cell 5: 1669–1679.

    Google Scholar 

  • Simon, J. 1957. Effects of insecticides and physical barriers on field spread of pepper veinbanding mosaic virus. Phytopathology 47: 139–145.

    Google Scholar 

  • Simpkins, I., Walkey, D.G.A., and Neely, H.A. 1981. Chemical suppression of virus in cultured plant tissues. Ann. appl. Biol. 99: 161–169.

    Google Scholar 

  • Sivamani, E., Huet, H., Shen, P., Ong, C.A., de Kochko, A., Fauquet, C., and Beachy, R.N. 1999. Rice plant (Oryza sativa L.) containing Rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Mol. Breeding 5: 177–185.

    Google Scholar 

  • Sserubombwe, W. 1998. Progress of cassava mosaic virus disease (CMD) and its effects on growth and yield. M Sc. Thesis, Makerere University, Kampala, Uganda.

    Google Scholar 

  • Sserubombwe, W.S., Thresh, J.M., Otim-Nape, G.W., and Osiru, D.O.S. 2001. Progress of cassava mosaic virus disease and whitefly vector populations in single and mixed stands of four cassava varieties grown under epidemic conditions in Uganda. Ann. appl. Biol. 135: 161–170.

    Google Scholar 

  • Stanley, J., and Townsend, R. 1985. Characterization of DNA forms associated with cassava latent virus infection. Nucl. Acids Res. 13: 2189–2330.

    Google Scholar 

  • Stanley, J., Frischmuth, T., and Ellwood, S. 1990. Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc. Nat. Acad. Sci. USA 87: 6291–6295.

    Google Scholar 

  • Stanley, J., Townsend, R., and Curson, S.J. 1985. Pseudorecombinant between cloned DNAs of two isolates of cassava latent virus. J. Gen. Virol. 66: 1055–1061.

    Google Scholar 

  • Storey, H.H., and Howland, A.K. 1967. Inheritance of resistance in maize to the virus of streak disease in East Africa. Ann. appl. Biol. 59: 429–436.

    Google Scholar 

  • Storey, H.H., and Nichols, R.F.W. 1938. Studies on the mosaic disease of cassava. Ann. appl. Biol. 25: 790–806.

    Google Scholar 

  • Swanson, M.M., and Harrison, B.D. 1994. Properties, relationships and distribution of cassava mosaic geminiviruses. Trop. Sci. 34: 15–25.

    Google Scholar 

  • Thomas, P., Kaniewski, W., Reed, G., and Lawson, C. 1994. Transgenic resistance to potato leafroll virus in Russet Burbank potatoes. In: Proc. 3rd EFPP Conference, M. Manka, (ed). J. Phytopathol. pp. 551–554.

    Google Scholar 

  • Thresh, J.M. 1982. Cropping practices and virus spread. Annu. Rev. Phytopath. 20: 139–218.

    Google Scholar 

  • Thresh, J.M., Fargette, D, and Otim-nape, G.W. 1994. Effects of African cassava mosaic geminivirus on the yield of cassava. Trop. Sci. 34: 26–42.

    Google Scholar 

  • Thresh, J.M., Otim-Nape, G.W., and Fargette, D. 1998. The control of African cassava mosaic virus disease: phytosanitation and/or resistance. In: Plant Virus Disease Control. (eds) A. Hadidi, R.K. Khetarpal and H. Koganezawa, APS Press, St. Paul, MN, USA. pp. 670–677.

    Google Scholar 

  • Van Dun, C.M.P., and Bol, J.P. 1988. Transgenic tobacco plants accumulating Tobacco rattle virus coat protein resist infection with tobacco rattle virus and pea early browning virus. Virology 167: 649–652.

    Google Scholar 

  • Van Loon, L.C. 1989. Stress proteins in infected plants. In: Plant-Microbe Interaction. T. Kosuge and E.W. Nester (eds). Mc Graw-Hill, New York, USA. pp: 198–237.

    Google Scholar 

  • Vanitharani R., Karthikeyan, A.S., Anuradha, S., and Veluthambi K. 1996. Genome homologies among geminiviruses infecting Vigna, cassava, Acalypha, Croton and Vernonia. Curr. Sci. 70: 63–69.

    Google Scholar 

  • Vidasky, F., Leviatov, S., Milo, J., Rabinowitch, H.D., Kedar, N., and Czosnek, H. 1998. Response of tolerant breeding lines of tomato, Lycopersicum esculentum, originating from three different sources (L. peruvianum, L. pimpinellifolium and L. chilense) to early controlled inoculation by tomato yellow leaf curl virus (TYLCV). Plant Breeding 117: 165–169.

    Google Scholar 

  • Vidasky, F., and Czosnek, H. 1998. Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88: 910–914.

    Google Scholar 

  • Wang, M.B., Abbott, D.C., and Waterhouse, P.M. 2000. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Plant Pathol. 1: 347–356.

    Google Scholar 

  • Wang, P.J., and Hu, C.Y. 1980. Regeneration of virus-free plants through in vitro culture. In: A. Fietchter (ed.). pp. 61–99.

    Google Scholar 

  • Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M. Eshed, Y., Harel, E., Pleban, T., Van Oss, H., Kedar, N., Rabinowitch, H.D., and Czosnek, H. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor. appl. Genet. 88: 141–146.

    Google Scholar 

  • Zhou, X., Liu, Y., Calvert, L., Munoz, C., Otim-nape, G.W., Robinson, D.J., Harrison, B.D. 1997. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has risen by interspecific recombination. J. Gen. Virol. 78: 2101–2111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fofana, I.B.F., Sangaré, A., Ndunguru, J., Kahn, K., Fauquet, C.M. (2003). Principles for control of virus diseases in developing countries. In: Loebenstein, G., Thottappilly, G. (eds) Virus and Virus-like Diseases of Major Crops in Developing Countries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0791-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0791-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3729-7

  • Online ISBN: 978-94-007-0791-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics