Cowpea (Vigna unguiculata) is an important crop, contributing to the health and livelihood of millions of people in tropical and sub-tropical countries, particularly Africa (Nigeria, Niger, Burkina Faso, Ghana, Kenya, Uganda, Tanzania, Senegal, Togo) and Asia (India, Pakistan, Bangladesh, Sri Lanka, Burma, Thailand, Nepal, China, Malaysia) (Rachie, 1985). Young leaves, immature pods, and dry-stored seeds from the plant serve as food, particularly for rural families. The crop also provides cash income and animal forage/fodder, and residue from the crop is valued for soil enrichment. Cowpea crops have also become important in southern states of the U.S. and in South America, particularly Brazil, as advanced, multiadapted cultivars (Quin, 1997).


Mosaic Virus Cucumber Mosaic Virus Mottle Virus Vigna Unguiculata Bean Common Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelbagi, A.O., and Ahmed, A.H. 1990. Effect of the Sudanese strain of peanut stunt virus on the growth, nodulation, and yield of cowpea. Trop. Agric. 67: 66–68.Google Scholar
  2. Agrawal, H.W. 1964. Identification of cowpea mosaic virus isolates. ?????Google Scholar
  3. Ahmed, M. 1978. Whitefly (Bemisia tabaci) transmission of the yellow mosaic disease of cowpea (Vigna unguiculata). Plant Dis. Reptr. 62: 224–226.Google Scholar
  4. Allen, D.J. 1983. The pathology of tropical food legumes. Disease resistance in crop improvement. John Wiley and Sons, Chichester, UK. 413 pp.Google Scholar
  5. Allen, D.J., Thottappilly, G., and Rossel, H.W. 1982. Cowpea mottle virus: field resistance and seed transmission in virus-tolerant cowpea, Vigna unguiculata.Ann. appl. Biol. 100: 331–336.Google Scholar
  6. Allen, D.J., Thottappilly, G., Emechebe, A.M., and Singh, B.B. 1998. Diseases of Cowpea, Pages 267-324 in The Pathology of Food and Pasture Legumes. Editors D.J. Allen and J.M. Lenne, pages 267–324, CAB International, Oxon, UI, 750 pp.Google Scholar
  7. Allison, R.F., Janda, M, and Ahlquist, P. 1988. Infectious in vitro transcripts from cowpea clhlorotic mottle virus cDNA clones and exchange of individual RNA components with brome mosaic virus. J. Virol. 62: 3581–3588.Google Scholar
  8. Allison, R.F., Janda, M., and Ahlquist. P. 1989. Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution. Virology 172: 321–330.Google Scholar
  9. Anno-Nyako, E.O. 1980. Studies on the vector relationships of whitefly-transmitted golden mosaic diseases of cowpea and lima bean. M.Sc. thesis, Univer. Science Technol., Kumasi, Ghana. 122pp.Google Scholar
  10. Anno-Nyako, E.O., Vetten, H.J., Allen, D.J., and Thottappilly, G. 1983. The relation between cowpea golden mosaic and its vector, Bemisia tabaci. Genn. Ann. appl. Biol. 102: 319–323.Google Scholar
  11. Assis, F.F.M., de, Paguio, O.R., Sherwood, J.L., and Deom, C.M. 2002. Symptom induction by cowpea chlorotic mottle virus on Vigna unguiculata is determined by amino acid residue 151 in the coat protein. J. Gen. Virol. 83: 897–883.Google Scholar
  12. Bancroft, J.B., Hiebert, E., Rees, M.W., and Markham, R. 1968. Properties of cowpea chlortic mottle virus, its protein and nucleic acid. Virology 34: 224–239.Google Scholar
  13. Barnet, O.W. (ed.) 1992. Potyvirus taxonomy. Arch. Virol. Supplement 5. Springer-Verlag, Wien, New York. 450 pp.Google Scholar
  14. Bashir, M. 1992. Serological and biological characterization of seed-borne isolates of blackeye cowpea mosaic and cowpea aphid-borne mosaic potyviruses in Vigna unguiculata (L.) Walp. PhD Thesis, Oregon State Univ. 222 pp.Google Scholar
  15. Bashir, M., and Bashir. A.M. 1988. Diseases of major pulse crops in Pakistan: A review. Trop. Pest Manag. 34: 309–314.Google Scholar
  16. Bashir, M., and Hampton. R.O. 1993. Natural occurrence of five seedborne cowpea viruses in Pakistan. Plant Dis. 77: 948–951.Google Scholar
  17. Bashir, M., Ahmad, Z., and Ghafoor, A. 2002. Cowpea aphid-borne mosaic potyvirus: a review. Int. J.. Pest Mgmt. 48: 155–168.Google Scholar
  18. Bertens, P., Wellink, J., Goldbach, R., and van Kammen, A. 2000. Mutational analysis of the cowpea mosaic virus movement protein. Virology 267: 199–208.Google Scholar
  19. Bijaisoradat, M., Kuhn, C.W., and Benner, C.P. 1988. Disease reactions, resistance, and viral antigen content in six legume species infected with eight isolates of peanut mottle virus. PlantDis. 72: 1042–1046.Google Scholar
  20. Bock, K.R. 1971. Notes on East African plant virus diseases. I. Cowpea mosaic virus. East African Agric. Forest. J 37: 60–62.Google Scholar
  21. Bock, K.R. 1973. East African strains of cowpea aphid-borne mosaic virus. Ann. appl. Biol. 74: 75–83.Google Scholar
  22. Bock, K.R., and Conti. M. 1974. Cowpea aphid-borne mosaic virus. Descript. plant virus. No. 134. Commonw. Mycol. Inst. & Assoc. Appl. Biol., Kew, Surrey, UK. 4 pp.Google Scholar
  23. Bozarth, R.G., and Shoyinka S.A. 1979. Cowpea mottle virus. Descriptions of plant viruses, No. 212. Commonw. Mycol. Inst. & Assoc. Appl. Biol. Kew, Surrey, UK. 3 pp.Google Scholar
  24. Brantley, B.B., and Kuhn, C.W. 1970. Inheritance of resistance to southern bean mosaic virus in southern pea (Vigna unguiculata). J. Amer. Soc. Hort. Sci. 95: 155–158.Google Scholar
  25. Brunt, A.A., and Kenton, R.H. 1973. Cowpea mild mottle virus. Descriptions of plant viruses No. 140. Commonw. Mycol. Inst. & Assoc. Appl. Biol. Kew, Surrey, UK. 4 pp.Google Scholar
  26. Brunt, A.A., Crabtree, K., Dallwitz, M.J., Gibbs, A.J., and Watson, L. 1996. Viruses of plants. Descriptions and lists from the VIDE database. CAB International, Wallingford. UK. 1484 pp.Google Scholar
  27. Chant, S.R. 1959. Viruses of cowpea, Vigna unguiculata (L.) Walp. in Nigeria. Ann. appl... 47: 565–573.Google Scholar
  28. Chant, S.R., and Gbaja, I.S. 1987. Further studies of co-infection of cowpea by sunnhemp mosaic virus and cowpea mosaic virus. Trop. Agric. 64: 115–118.Google Scholar
  29. Chen, X., and Bruening G. 1992a. Cloned DNA copies of cowpea severe mosaic virus genomic RNAs: infectious transcripts and complete nucleotide sequences of RNA 1. Virology 191: 607–618.Google Scholar
  30. Chen, X., and Bruening G. 1992b. Nucleotide sequence and genetic map of cowpea severe mosaic virus RNA 2 and comparisons with RNA 2 of other comoviruses. Virology 187: 682–692.Google Scholar
  31. Collins, M.H., Witcher, W., Barnett, O.W., and Ogle, W.L. 1985. Reactions of 16 cowpea cultivars to six viruses. Plant Dis. 69: 18–20.Google Scholar
  32. Debrot, C.E., and Rojas, C.E.B., de. 1967. El virus del mosaico del frijol. Vigna sinensis Endl. en Venezuela. Agronomia Tropical 17: 3–16.Google Scholar
  33. Demski, J.W., Alexander, A.T., Stefani, M.A., and Kuhn, C.W. 1983. Natural infection, disease reactions, and epidemiological implications of peanut mottle virus in cowpea. Plant Dis. 67: 267–269.Google Scholar
  34. Di, R., Hill, J.H., and Deusen, R.A., van. 1993. Antigenic signature analysis reflects differences among plant virus isolates. J. Virol. Meth. ?????: 281–292.Google Scholar
  35. Dijkstra, J., Bos. L., Bouwmeester, H.J., Hadiastono, T., and Lohuis, H. 1987. Identification of blackeye cowpea mosaic virus from germplasm of yard-long bean and from soybeans, and the relationship between blackeye cowpea mosaic virus and cowpea aphid-borne mosaic virus. Neth. J. Pl. Path. 93: 115–133.Google Scholar
  36. Eastwell, K.C., Kiefer, M.C., and Bruening, G. 1983. Immunity of cowpeas to cowpea mosaic virus. Pages 201-211 in Plant molec. biol., edited by R.B. Goldberg. UCLA Symposia of Molec. & Cell Biol., New Series Vol XII. Alan R. Liss, New York, NY, USA.Google Scholar
  37. Edwards, M.C., Gonsalves, D., and Provvidenti, R. 1983. Genetic analysis of cucumber mosaic virus in relation to host resistance: location of determinants for pathogenicity to certain legumes and Lactuca salingna. Phytopathology 73: 269–273.Google Scholar
  38. Faria, J.C., Bezerra, I.C., Zerbini, F.M., Ribeiro, S.G., and Mirtes, M.F. 2002. Current status of diseases caused by geminiviruses in Brazil. Fitopatol. Brasil. 25: 125–137.Google Scholar
  39. Fery, R. 1985. The genetics of cowpea: a review of the world literature. Pages 25–62 in Cowpea research, production and utilization, (eds) S.R. Singh and K.O. Rachie. John Wiley and Sons, Chichester, UK.Google Scholar
  40. Fery, R. 2002. Notice of release of ‘KnuckleHull-VNR’, a blackeye cowpea mosaic virus and root-knot nematode resistant, crowder-type southernpea. USDA, ARS, Washington, D.C.Google Scholar
  41. Fischer, H.U., and Lockhart, B.E. 1976. A strain of cowpea aphid-borne mosaic virus isolated from cowpeas in Morocco. Phytopath. Z. 85: 43–48.Google Scholar
  42. Fondong, V.N., Thresh, J.M., and Zok, S. 2002. Spatial and temporal spread of cassava mosaic virus disease in cassava grown alone and when intercropped with maize and/or cowpea. J. Phytopath. 150: 365–374.Google Scholar
  43. Francki, R.I.F., Mossop, D.W., and Hatta, T. 1979. Cucumber mosaic virus. Descriptions of plant viruses, No. 213. Commonw. Mycol. Inst. & Assoc. Appl. Biol., Kew, UK. 6 pp.Google Scholar
  44. Fuentes, A.L., and Hamilton, R.I. 1991. Sunnhemp mosaic virus facilitates cell-to-cell spread of southern bean mosaic virus in nonpermissive host. Phytopathology 81: 1302–1305.Google Scholar
  45. Fuentes, A.L., and Hamilton, R.I. 1993. Failure of long-distance movement of southern bean mosaic virus in a resistant host is correlated with lack of normal virion formation. J. Gen. Virol. 74: 1903–1910.Google Scholar
  46. Fulton, J.P., and Allen, D.J. 1982. Identification of resistance to cowpea severe mosaic virus, in Vigna unguiculata. Trop. Agric. 59: 66–68.Google Scholar
  47. Galasso, I., Heslop-Harrison, J.S., Perrino, P., and Pignone, D. 1997. Location and organization of major repetitive DNA sequence families in Vigna unguiculata [L.] Walp. Pages 372-375 in Adv. Cowpea Res. (eds.) B.B. Singh, D.R. Mohan Raj, K.E. Dashiell, and L.E.N. Jackai. Copublication Intern. Inst. Trop. Agric. (IITA) and Japan Intern. Res. Center Agric. Sciences (JIRCAS). IITA, Ibadan, Nigeria.Google Scholar
  48. Gillaspie, A.G., Jr. 2001. Resistance to cucumber mosaic virus in cowpea and implications for control of cowpea stunt disease. Plant Dis. 85: 1004–1005.Google Scholar
  49. Gillaspie, A.G., Jr., Hopkins, M.S., Pinnow, D.L., and Hampton, R.O. 1994. Seedborne viruses in pre-introduction cowpea seedlots and establishment of virus-free accessions. Plant Dis. 79: 388–391.Google Scholar
  50. Gillaspie, A.G., Jr., Mitchell, S.E., Stuart, G.W., and Bozarth, R.F. 1999. RT-PCR method for detecting cowpea mottle carmovirus in Vigna germplasm. Plant Dis. 83: 639–643.Google Scholar
  51. Gilmer, R.M., Whitney, W.K., and Williams, R.J. 1974. Epidemiology and control of cowpea mosaic in western Nigeria. Page 269 in Proc. First IITA Grain Legume Workshop, IITA, Ibadan, Nigeria.Google Scholar
  52. Gopinath, K., J. Wellink, C. Porta, K.M. Taylor, G.P. Lomonossoff, and A. van Kammen. 2000. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 267: 159–173.Google Scholar
  53. Gould, A.R., and Symons, R.H. 1982. Cucumber mosaic virus RNA 3. Eur. J. Biochem. 126: 217–226.Google Scholar
  54. Guia da, S.L.M., Florindo, G.M.I., Farias, A.M.E., Marinho, S.A.C., Oliveira, O.M.L., and Fernandes, M.D. 2001. Specific antibody production in mice orally fed with cowpea severe mosaic virus. FASEB J. 15(5). A1229.Google Scholar
  55. Gumedzoe, M.Y. 1993. Major virus diseases of medicinal and aromatic plants for human welfare. Acta Horticul. 331: 307–310.Google Scholar
  56. Gumedzoe, M.Y., Sunu, D.Y., Thottapilly, G., and Asselin, A. 1990. Importance of cowpea mottle virus and cowpea yellow mosaic virus in Togo. Phytoprotec. 71: 85–91.Google Scholar
  57. Gumedzoe, M.Y., Rossel, H.W., Thorrappilly, G., Asselin, A., and Huguenot C. 1998. Reaction of cowpea (Vigna unguiculata L. Walp.) to six isolates of blackeye cowpea mosaic virus, cowpea aphid-borne mosaic virus (CABMV), two potyviruses infecting cowpea in Nigeria. Intern. J. Pest Mgmt. 44: 11–16.Google Scholar
  58. Hacker, D.L., Petty, I.T.D., Wei, N., and Morris, T.J. 1992. Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186: 1–8Google Scholar
  59. Hampton, R.O., and Francki, R.I.B. 1992. RNA-1 dependent seed transmissibility of cucumber mosaic virus in Phaseolus vulgaris. Phytopathology 82: 127–130.Google Scholar
  60. Hampton, R.O., Albrechtsen, S.E., and Mathur, S.B. 1992. Seed health (viruses) of Vigna unguiculata selections from developing countries. Seed Sci. & Technol. 20: 23–38.Google Scholar
  61. Hampton, R.O., Thottappilly, G., and Rossell, H.W. 1997. Viral diseases of cowpea and their control by resistance-conferring genes. Adv. Cowpea Res. Pages 159–175 (see publication details, Galasso et al. 1997)Google Scholar
  62. Hayes, R.J., and Buck, K.W. 1990. Infectious cucumber mosaic virus RNA transcribed in vitro from clones obtained from cDNA amplified from cDNA amplified using the polymerase chain reaction J. Gen. Virol. 71: 2503–2508.Google Scholar
  63. Hobbs, H.S., Kuhn, C.W., Papa, K.E., and Brantley, B.B. 1987. Inheritance of non-necrotic resistance to southern bean mosaic virus in cowpea. Phytopathology 77: 1624–1629.Google Scholar
  64. Huguenot, C., Furneaux, M.T., and Hamilton, R.I. 1994. Capsid protein properties of cowpea aphid-borne mosaic virus and blackeye cowpea mosaic virus confirm the existence of two major subgroups of aphid-transmitted, legume-infecting potyviruses. J. Gen. Virol. 75: 3555–3560.Google Scholar
  65. Huguenot, C., Furneaux, M.T., Thottappilly, G., Rossel, H.W., and Hamilton, R.I. 1993. Evidence that cowpea aphid-borne mosaic and blackeye cowpea mosaic viruses are two different potyviruses. J. Gen. Virol. 74: 335–340.Google Scholar
  66. Jackai, L.E.N., and Adalla, C.B. 1997. Pest management practices in cowpea: a review in Adv. Cowpea Res. (see publication details, Galasso, et al. 1997).Google Scholar
  67. Jager, C.P., de. 1979. Cowpea severe mosaic virus. Descriptions of plant viruses. No. 209. Commonw. Mycol. Inst. & Assoc. Appl. Biol., Kew, Surrey, UK. 5 pp.Google Scholar
  68. Jaspars, E.M.J., and Bos, L. 1980. Alfalfa mosaic virus. Descriptions of plant viruses, No. 229. Mycol. Inst. & Assoc. Appl. Biol., Kew, Surrey, UK. 7 pp.Google Scholar
  69. Karasawa, A., Itaru, O., Kayoko, A., Ytaka, C., Shuu, H., Yoshiko, N-N., Akiko, I. and Yoshio, E. 1999. One amino acid change in cucumber mosaic virus RNA polymerase determines virulent/avirulent phenotypes on cowpea. Phytopathology 89: 1186–1192.Google Scholar
  70. Khalf-Allah, A.M., Faris, F.S., and Nassar, S.H. 1973. Inheritance and nature of resistance to cucumber mosaic virus in cowpea, Vigna sinensis. Egyp. J. Genet. & Cytol. 2: 274–282.Google Scholar
  71. Kim, J.W., and R.F. Bozarth. 1992. Mapping and sequence analysis of the capsid protein gene of cowpea mottle virus. Interviology 33: 135–147.Google Scholar
  72. Kononowicz, A.K., Cheah, K.T., Narasimhan, M.S., Murdock, L.L., Shade, R.E. Chrispeels, M.J., Filippone, E., Monti, L.M., Bressan, R.A., and Hasegawa, P.M. 1997. Developing a transformation system for cowpea (Vigna unguiculata [L.] Walp.) Pages 361-371 in Adv. Cowpea Res. (see publication details, Galasso et al. 1997).Google Scholar
  73. Kuhn, C.W. 1964a. Purification, serology, and properties of a new cowpea virus. Phytopathology 54: 853–857.Google Scholar
  74. Kuhn, C.W. 1964b. Separation of cowpea virus mixtures. Phytopathology 54: 739–740.Google Scholar
  75. Kuhn, C.W. 1990. Cowpea virus diseases in the United States: A status report. Pages 7-23 in Cowpea Research: a U.S. Perspective, edited by J.C. Miller, J.P. Miller, and R.L. Fery. Texas Agricultural Experiment Station, College Station, TX, USA.Google Scholar
  76. Kuhn, C.W., and Brantley, B.B. 1963. Cowpea resistance to the cowpea strain of southern bean mosaic virus. Plant Dis. Reptr. 47: 1094–1096.Google Scholar
  77. Kuhn, C.W., and Dawson, W.O. 1973. Multiplication and pathogenesis of cowpea chlorotic mottle virus and southern bean mosaic virus in single and double infections in cowpea. Phytopathology 63: 1380–1385.Google Scholar
  78. Kuhn, C.W., Benner, C.P., and Hobbs, H.A. 1986. Resistance responses in cowpea to southern bean mosaic virus based on virus accumulation and symptomatology. Phytopathology 76: 795–799.Google Scholar
  79. Kuhn, C.W., Brantley, B.B., Demski, J.W., and Pio-Ribeiro, G. 1984. ‘Pinkeye Purple Hull-BVR’, ‘White Acre-BVR’, and Corona’ cowpeas. HortSci. 19: 592.Google Scholar
  80. Kuhn, C.W., Wyatt, S.D., and Brantley, B.B. 1981. Genetic control of symptoms, movement, and virus accumulation in cowpea plants infected with cowpea chlorotic mottle virus. Phytopathology 71: 1310–1315.Google Scholar
  81. Kyle, M.M., and Provvidenti, R. 1993. Genetics of broad spectrum viral resistance in bean and pea. Pages 153-166 in Resistance to viral diseases of vegetables: genetics and breeding, edited by M.M. Kyle. Timber Press, Portland, OR, USA.Google Scholar
  82. Laksman, D.K., Gonsalves, D., and Fulton, R.W. 1985. Role of Vigna species in the appearance of pathogenic variants of cucumber mosaic virus. Phytopathology 75: 751–757.Google Scholar
  83. Lee, L., and Anderson, E.J. 1998. Nucleotide sequence of a resistance breaking mutant of southern bean mosaic virus. Arch. Virol. 143: 2189–2201.Google Scholar
  84. Lekkerkerker, A., Wellink, J., Yuan, P., van Lent, J., Goldbach, R., and van Kammen, A. 1996. Distinct functional domains in the cowpea mosaic virus movement protein. J. Virol. 70: 5658–5661.Google Scholar
  85. Lima, J.A.A., Lima, R.C.A., and Goncalves, M.F.B. 2001. Production of polyclonal antisera specific to plant viruses by rabbit oral immunization. Fitopat. Brasil. 26: 774–777.Google Scholar
  86. Lomonossoff, G.P. 1995. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33: 323–343.Google Scholar
  87. Lomonossoff, G.P., and Shanks, M. 1983. The nucleotide sequence of cowpea mosaic virus B RNA. EMBO Jour. 2: 2253–2258.Google Scholar
  88. Lovisolo, O., and Conti, M. 1966. Identification of an aphid-transmitted (sic.) cowpea mosaic virus. Neth. Jour. Pl. Path. 72: 265–269.Google Scholar
  89. Malathi, V.V., Naghma, A., and Surendranath, B. 2002. Nucleotide sequence update, bases 1 to 2746 of cowpea golden mosaic geminivirus DNA, Direct Submission.Google Scholar
  90. Mali, V.R., and Ganacharya, N.M. 1984. Comparative studies on two isolates of tobacco ring spot virus from cowpea. Indian Phytopath. 37: 630–632.Google Scholar
  91. Mali, V.R., and Thottappilly, G. 1986. Virus diseases of cowpea in the tropics. Pages 361–403 in Reviews of tropical plant diseases, Vol. 3, edited by S.P. Raychaudhri and J.P. Verma. Today & Tomorrow Publishers, New Delhi, India.Google Scholar
  92. Mali, V.R., Patil, F.S., and Gaushal, D.H. 1981. Immunity and resistance to bean yellow mosaic, cowpea aphid borne mosaic and tobacco ringspot viruses in cowpea, Vigna sinensis. Indian Phytopath. 34: 521–522.Google Scholar
  93. Mansour, A., Al-Musa, A., Vetten, H.J., and Lesemann, D-E. 1998. Properties of a cowpea mild mottle virus (CPMMV) isolate from eggplant in Jordan and evidence for biological serological differences between CPMMV isolates from leguminous and solanaceous host. Jour. Phytopath. (Berlin) 146: 539–547.Google Scholar
  94. McKern, N.M., Mink, G.I., Barnett, O.W., Mishra, L.A., Whittaker, L.A., Silbernagel, M.J., Ward, C.W., and Shukla, D.D. 1992. Isolates of bean common mosaic virus comprising two distinct potyviruses. Phytopathology 82: 923–929.Google Scholar
  95. Melton, A., Ogle, W.L., Barnett, O.W., and Caldwell, J.D. 1987. Inheritance of resistance to viruses in cowpea. Phytopathology 77: 642.Google Scholar
  96. Mlotshwa, S., Verver, J., Sithole-Niang, I., Van Kampen, T., Van Kammen, A., and Wellink, J. 2002. The genomic sequence of cowpea aphid-borne mosaic virus and its similarities to other potyviruses. Arch. Virol. 147: 1043–1052.Google Scholar
  97. Monti, L.M, Murdock, L.L., and Thottappilly, G. 1997. Opportunities for biotechnology in cowpea. Pp. 341–351 in Adv. Cowpea Res. (see publication details, Galasso et al. 1997)Google Scholar
  98. Naidu, R.A., Gowda, S., Satyanarayana, T., Boyko, V., Reddy, A.S., Dawson, W.O., and Reddy, D.V.R. 1998. Evidence that whitefly-transmitted cowpea mild mottle virus belongs to the genus Carlavirus. Arch. Virol. 143: 769–780.Google Scholar
  99. Nasu, Y., Karasawa, A., Hase, S., and Ehara, Y. 1996. Cry, the resistance locus of cowpea to cucumber mosaic virus strain Y. Phytopathology 86: 946–951.Google Scholar
  100. Ndiaye, M., Bashir, M., Keller, K.E., and Hampton, R.O. 1993. Cowpea viruses in Senegal, West Africa: identification, distribution, seed-transmission, and sources of genetic resistance. Plant Dis. 77: 999–1003.Google Scholar
  101. Negri, V., Tosti, N., Falcinelli, M., and Veronesi, F. 2002. Characterisation of thirteen cowpea landraces from Umbria (Italy). Strategy for their conservation and promotion. Genetic Resources & Crop Evolution 47: 141–146.Google Scholar
  102. Nobumitsu, S., Yasunari, F., Kazuyiki, M., and Iwao, Furusawa. 2001. Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid Bromovirus are required for adaptation to a nonhost. Virology 279: 47–57.Google Scholar
  103. Odu, B.O. 1999. Isolation, characterization and identification of apotyvirus from Doscorealata L. (water yam) in Nigeria. Ann. appl. Biol. 134: 65–71.Google Scholar
  104. Ogundiwin, E.A. 2002. Genetic dissection of cowpea mottle virus disease resistance in Vigna species. PhD thesis, Dept of Agron., Biotech. Research Unit, Univ. of Ibadan, Nigeria.Google Scholar
  105. Orozco, S.M., Lopez, A.O., Perez, O., Delgadillo, S.F. 1994. Effect of transparent mulch, floating row covers and oil sprays on insect populations, virus diseases and yield of cantaloupe. (Mexico) Biological Agric. Hortic. 10: 229–234.Google Scholar
  106. Ouattara, S., and Chambliss, O.L. 1991. Inheritance of resistance to blackeye cowpea mosaic virus in ‘White Acre-BVR’ cowpea. HortSci. 26: 194–196.Google Scholar
  107. Patel, P.N. 1982. Reactions of cowpeas to two strains of cowpea mosaic virus from Tanzania. Indian Phytopath. 35: 461–466.Google Scholar
  108. Patel, P.N., Mligo, J.K., Leyna, H.K., Kuwite, C., and Mmbaga, E.T. 1982a. Sources of resistance, inheritance, and breeding of cowpeas for resistance to a strain of cowpea aphidborne mosaic virus from Tanzania. Indian J. Genet. 42: 221–229.Google Scholar
  109. Patel, P.N., Mligo, J.K. Leyna, H.K., Kuwite, C., and Mmbaga, E.T. 1982b. Multiple disease resistance cowpea breeding program in Tanzania. Indian J. Genet. 42: 230–239.Google Scholar
  110. Paz C.D., da., Lima, A.A., Pio-Ribeiro, G., Assis, F.F.M., Andrade, G.P., and Goncalves, M.F.B. 1999. Purification of an isolate of cowpea severe mosaic virus, obtained in Pernambuco, production of antiserum, and determination of sources of resistance in cowpea. Summa Phytopath. 25: 285–288.Google Scholar
  111. Pio-Ribeiro, G., Kuhn, C.W., and Brantley, B.B. 1980. Cowpea stunt: inheritance pattern of the necrotic synergistic reaction. Phytopathology 70: 250–252.Google Scholar
  112. Pio-Ribeiro, G., Wyatt, S.D., and Kuhn. C.W. 1978. Cowpea stunt: a disease caused by a synergistic interaction of two viruses. Phytopathology 68: 1260–1265.Google Scholar
  113. Ponz, F., Russell, M.S., Rowhani, A., and Bruening, G. 1988. A cowpea line has distinct genes for resistance to tobacco ringspot virus and cowpea mosaic virus. Phytopath.ology 78: 1124–1128.Google Scholar
  114. Provvidenti, R. 1993. Genetics of resistance to viral diseases of bean. Pp. 112–152 in Resistance to viral diseases of vegetables: genetics and breeding, edited by M.M. Kyle. Timber Press, Portland, OR, USA.Google Scholar
  115. Purcifull, D., and Gonsalves, D. 1985 Blackeye cowpea mosaic virus. Descriptions of plant viruses, No. 305. Commonw. Mycol. Inst. & Assoc. Appl. Biol., Kew, Surrey, UK. 5 pp.Google Scholar
  116. Puttaraju, H.R., Prakash, H.S., and Shetty, H.S. 2000. Field incidence, seed-transmission and susceptibility of cowpea varieties with reference to blackeye cowpea mosaic potyvirus. Seed Research (New Delhi) 28: 196–202.Google Scholar
  117. Quin, F.M. 1997. Introduction Pp ix-xv in Adv. Cowpea Res. (see publication details in Galasso et al.)Google Scholar
  118. Rachie, K.O. 1985. Introduction. Pages xxi — xxviii in Cowpea Research, Production, and Utilization. (Eds S.R. Singh and K.O. Rachie. John Wiley & Sons Ltd. 460 pp.Google Scholar
  119. Rao, A.L.N., and Francki, R.I.B. 1982. Distribution of determinants for symptom production and host range of the three RNA components of cucumber mosaic virus. J. Gen. Virol. 61: 197–205.Google Scholar
  120. Reeder, B.D., Norton, J.D., and Chambliss, O.L. 1972. Inheritance of bean yellow mosaic virus resistance in southern pea, Vigna sinensis. J. Amer. Soc. Hort. Sci. 98: 62–63.Google Scholar
  121. Regenmortel, M.H.V, van, and 10 Co-Editors. 2000. Virus Taxonomy (Seventh Report of the, International Committee on Taxonomy of Viruses).Google Scholar
  122. Rezaian, M.A.I., Williams, R.H.V. Gordon, J.H.K, Gould, A.R., and Symons, R.H. 1984. Nucleotide sequence of cucumber mosaic virus RNA 2 reveals a translation product significantly homologous to corresponding proteins of other viruses. Eur. J. Biochem. 143: 277–284.Google Scholar
  123. Rezaian, M.A.I., Williams, R.H.V., A.R., and Symons, R.H. 1985. Nucleotide sequence of cucumber mosaic virus RNA 1: presence of a sequence complementary to part of the viral satellite RNA and homologies with other viral RNAs. Eur. J. Biochem. 150: 331–339.Google Scholar
  124. Robertson, D.G. 1965. The local lesion reaction for recognizing cowpea varieties immune from and resistant to cowpea yellow mosaic virus. Phytopathology 55: 923–925.Google Scholar
  125. Rogers, K.M., Norton, J.D., and Chambliss. 1973. Inheritance of resistance to cowpea chlorotic mottle virus in southern pea, Vigna sinensis. J. Amer. Soc. Hort. Sci. 98: 62–63.Google Scholar
  126. Sangwan, R.S., Lodhi, G.P., and Jaglan, R.S. 2000. Stability of resistance to yellow mosaic virus over environments in cowpea. Indian J. Genet. & Pl. Breeding 60: 553–555.Google Scholar
  127. Santos, F.M.L., Lima, J.A.A., Santos, A.A. 1999. Single and mixed virus infections in cowpea in Ceara, Brazil. Fitopat. Brasil. 24: 518–522.Google Scholar
  128. Scully, B.T., and Federer, W.T. 1993. Application of genetic theory in breeding for multiple viral resistance. Pages 167–195 in Resistance to viral diseases of vegetables: genetics and breeding, edited by M.M. Kyle. Timber Press, Portland, OR, USA.Google Scholar
  129. Sharma, S.R. 1984. Effect of cultural practices on virus infection in cowpea. (German) Journal of Agronomy and Crop Science 153: 23–31.Google Scholar
  130. Sharma, S.R., and Varma, A. 1976. Cowpea yellow fleck, a whitefly-transmitted disease of cowpea. Indian Phytopath. 29: 421–423.Google Scholar
  131. Shepherd, R.J. 1964. Properties of a mosaic virus of cowpea and its relationship to the bean pod mottle virus. Phytopathology 54: 466–473.Google Scholar
  132. Shepherd, R.J., and Fulton J.P. 1962. Identity of a seedborne virus of cowpea. Phytopathology 52: 489–493.Google Scholar
  133. Shoyinka, S.A., Bozarth, R.F., Rees, J., and Rossel, H.W. 1978. Cowpea mottle virus: a seedborne virus with distinctive properties infecting cowpeas in Nigeria. Phytopathology 68: 693–699.Google Scholar
  134. Shoyinka, S.A., Thottappilly, G., Adebayo, G.G., and Anno-Nyako, F.O. 1997. Survey of cowpea virus incidence and distribution in Nigeria. Intern. J. Pest Manag. 43: 127–132.Google Scholar
  135. Sijen, T., Wellink, J., Hendriks, J., Verver, J., and van Kammen, A. 1995. Replication of cowpea mosaic virus RNA1 or RNA2 is specifically blocked in transgenic Nicotiana benthamiana plants expressing the full-length replicase or movement protein genes. Molec. Plant-Microbe Interac. 8: 340–347.Google Scholar
  136. Silva, A.M., and Rossman, M.R. 1987. Refined structure of southern bean mosaic virus at 2. 9 angstrom resolution. J. Molec. Biol. 197: 69–87.Google Scholar
  137. Singh, B.B., Chambliss, O.L., and Sharma, B. 1997. Cowpea genetics: a review of the recent literature. Pages 13–29 in Adv. Cowpea Res. (see publication details, Galasso etal. 1997)Google Scholar
  138. Skotnicki, M.S., Mackenzie, A.M., Torronen, M., and Gibbs, A.J. 1993. The genomic sequence of cardamine chlorotic fleck carmovirus. J. Gen. Virol. 74: 1933–1937.Google Scholar
  139. Strniste, P.B. 1987. The inheritance and assessment of a second qualitative gene for blackeye cowpea mosaic virus resistance in southern pea, Vigna unguiculata (L.)Walp. M.S. Thesis, Auburn Univ., Auburn, AL (USA).Google Scholar
  140. Taiwo, M.A., Gonsalves, D., Provvidenti, R., and Thurston, H.D. 1982a. Partial characterization and grouping of isolates of blackeye cowpea mosaic and cowpea aphidborne mosaic virus. Phytopathology 72: 590–596.Google Scholar
  141. Taiwo, M.A., Provvidenti, R., and Gonsalves, D. 1982b. Inheritance of resistance to blackeye cowpea mosaic virus in Vigna unguiculata. J. Hered. 72: 433–434.Google Scholar
  142. Thottappilly, G. 1992. Plant virus diseases of importance to African agriculture. J. Phytopath. 134: 265–268.Google Scholar
  143. Thottappilly, G., and Rossel, H.W. 1982. Seed transmission of cowpea (yellow) mosaic virus unlikely in cowpea. Tropical Grain Bull. 34: 27–28.Google Scholar
  144. Thottappilly, G., and Rossel, H.W. 1985. Worldwide occurrence and distribution of virus diseases. Pages 155–171 in Cowpea research, production and utilization, eds. S.R. Singh and K.O. Rachie, John Wiley and Sons, Chicester, UK.Google Scholar
  145. Thottappilly, G., and Rossel, H.W. 1988. Occurrence of cowpea mottle virus and other viruses (cowpea yellow mosaic virus, southern bean mosaic virus) in cowpea. FAO Plant Protection Bull. 36: 1984–1985.Google Scholar
  146. Thottappilly, G., and Rossel, H.W. 1992. Virus diseases of cowpea in tropical Africa. Tropical Pest Managm. 38: 337–348.Google Scholar
  147. Thottappilly, G., Hamilton, R.I., Huguenot, C., Rossel, H.W., Furneaux, M.T., Gumedzoe, M.Y., Shoyinka, S.A., Naik, D.M., Konate, G. Atcham-Agneroh, T., Haciawa, H.C., Anno-Nyako, F.O., Saifodine, N., Wangai, A. Lamptey, P. Gubba, A., Mbwaga, A.M., Neya, J, Offei, S.K. 1993. Identification of cowpea viruses and their strains in tropical Africa. FAO Plant Protection Bull. 41: 65–71.Google Scholar
  148. Thottappilly, G., ibid. 1995. Identification of cowpea viruses and their strains in tropical Africa. IITA Research 10: 12–15.Google Scholar
  149. Thottappilly, G., Sehgal, O.P., and Rossel, H.W. 1993. Characteristics of a cowpea chlorotic mottle virus isolate from Nigeria. Plant Dis. 77: 60–63.Google Scholar
  150. Thouvenel, J.C., Tia, E., and Fishpool, L.D.C.. 1990. Characterization of cowpea mottle virus on cowpea (Vigna unguiculata) in the Ivory Coast and identification of a new vector. Tropical Agriculture 67: 280–282.Google Scholar
  151. Tremaine, J.H., Ronald, W.P., and Mackenzie, D.J. 1985. Southern bean mosaic virus monoclonal antibodies: reactivity with virus strains and with the virus antigen in different conformations. Phytopathology 75: 1208–1212.Google Scholar
  152. Tsai, W.S., Green, S.K., and Deshpande, R.R. 2000. Direct Submission of bases 1 to 2728, nucleotide sequence of cowpea golden mosaic geminivirus DNA.Google Scholar
  153. Umaharan, P., Ariyanayagam, R.P., and Haque, S.Q. 1997. Resistance to cowpea severe mosaic virus, determined by three dosage dependent genes in [Vigna unguiculata (L.) Walp. Euphytica 95: 49–55.Google Scholar
  154. Umaharan, P., Haque, S.Q., and Ariyanayagam R.P. 1997. Identification of resistance to cowpea severe mosaic virus (Trinidad isolate) in cowpea [Vigna unguiculata (L.) Walp.]. Trop. Agric. Trinidad 74: 324–328.Google Scholar
  155. Valverde, R.A., Moreno, R., and Gamez, R. 1982. Yield reduction in cowpea Vigna unguiculata [L.] Walp.) infected with cowpea severe mosaic virus in Costa Rica. Turriabla 32: 89–90.Google Scholar
  156. Van Boxtel, J., Lesley, T.C., and Maule, J.A. 2000. Phylogenetic analysis of two potyvirus pathogens of commercial cowpea lines: Implications for obtaining pathogen-derived resistance. Virus Genes 20: 71–77.Google Scholar
  157. Walker, C.A., and Chambliss, O.L.. 1981. Inheritance of resistance to blackeye cowpea mosaic virus in Vigna unguiculata (L.) Walp. J. Amer. Soc. Hort. Sci. 106: 410–412.Google Scholar
  158. Walters, H.J., and Barnett, O.W. 1964. Bean leaf beetle transmission of Arkansas cowpea mosaic virus. Phytopathology. 54: 911.Google Scholar
  159. Williams, R.J. 1975. The control of cowpea diseases in the IITA Grain Legume Improvement Program. Pages 139–146 in Tropical diseases of legumes, eds. J. Bird and K. Maramorosch. Academic Press, New York, NY, USA.Google Scholar
  160. Williams, R.J. 1977. The identification of multiple disease resistance in cowpea. Tropic. Agric. (Trinidad) 54: 53–60.Google Scholar
  161. Winter, S., Butgereitt, A., and Thottappilly, G. 2002. Cowpea golden mosaic virus and related geminiviruses associated with Vigna spp. in Nigeria. Poster presentation, Intern Virology Congress, Sydney, AU, 1999.Google Scholar
  162. Wu, S., Rinehart, C.A., and Kaesberg, P. 1987. Sequence and organization of southern bean mosaic virus genomic RNA. Virology 161: 73–80.Google Scholar
  163. You, X.J. Rinehart, C.A., and Kesberg, P. 1987. Sequence and organization of southern bean mosaic virus genomic RNA. Virology 161: 73–80.Google Scholar
  164. You, X.L., Kim, J.W., Stuart, G.W., and Bozarth, R.F. 1995. The nucleotide sequence of cowpea mottle virus and its sequence homology to carmoviruses. J.. Gen. Virol. 76: 2841–2845.Google Scholar
  165. Zeeuw,, and Ballard, J.C. 1959. Inheritance in cowpea of resistance to tobacco ringspot virus. Phytopathology 49: 332–334.Google Scholar
  166. Zeeuw, D.J. de, and Crum, R.A. 1963. Inheritance of resistance to tobacco ringspot and cucumber viruses in black cowpea crosses. Phytopathology 53: 337–340.Google Scholar
  167. Zheng, H., Chen, Jiong., and Chen, Jianping. 2002. Bean common mosaic virus isolates causing different symptoms in asparagus bean in China differ greatly in the 5′-parts of their genomes. Arch. Virol. 147: 1257–1262.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • R. O. Hampton
    • 1
    • 2
  • G. Thottappilly
    • 3
  1. 1.Agriculture Research ServiceU. S. Department of AgricultureCorvallisUSA
  2. 2.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  3. 3.Mahyco Research FoundationHyderabadIndia

Personalised recommendations