Flux-Flow Oscillator (FFO) Made with the Fluxon Cloning Circuits

  • H. Farhan-Hassan
  • D. R. Gulevich
  • P. N. Dmitriev
  • V. P. Koshelets
  • F. V. Kusmartsev
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


In present paper we have developed a new device, Flux-Flow Oscillator (FFO) where flux cloning phenomena have been demonstrated. Such FFO made with the use of flux cloning circuit can in principle operate even without magnetic field, that is in a very different manner than conventional FFO [1] developed nowadays for practical applications [2, 3]. We have designed such a novel device and build it up with the use of the long Josephson T-shaped junction of a linear overlap geometry made up with Nb-AlO x -Nb technology. We have theoretically described the properties of such a device and the dynamics of vortices there. These theoretical studies have been performed in the framework of a sine-Gordon model, which includes surface losses. Finally we have tested the device experimentally and demonstrated that the flux cloning can lead to a strong coherent terahertz radiation. There the shape of the spectral lines and the current-voltage characteristics have been also measured.


External Magnetic Field Magnetic Flux Josephson Junction Bias Current Terahertz Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    T. Nagatsuma, K. Enpuku, F. Irie, and K. Yoshida, J. Appl. Phys., 54, 3302, (1983), see also Pt. II: J. Appl. Phys. 56 3284 (1984); Pt. III, J. Appl. Phys., 58 441 (1985); Pt. IV, J. Appl. Phys. 63. 1130 (1988)Google Scholar
  2. [2]
    V. P. Koshelets et al, IEEE Trans. on Applied Superconductivity, 5, 3057, 1995.CrossRefGoogle Scholar
  3. [3]
    G. de Lange, et al, Supercond. Sci. Technol. vol. 23, 045016, (2010).ADSCrossRefGoogle Scholar
  4. [4]
    A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, John Wiley and Sons, Inc. (1982).CrossRefGoogle Scholar
  5. [5]
    D..R.Gulevich, F.V. Kusmartsev, Phys Rev. Lett., 97, 017004, 2006.Google Scholar
  6. [6]
    D..R.Gulevich, F.V. Kusmartsev, Supercond. Sci. Technol. 20, S60-S67, 2007.Google Scholar
  7. [7]
    M. Jaworski, Supercond. Sci. Technol., 21, 065016, 2008.ADSCrossRefGoogle Scholar
  8. [8]
    D. R. Gulevich, F.V. Kusmartsev, S. Savel’ev, V.A. Yampol’skii, F. Nori, Phys. Rev. Lett. 101, 127002, 2008.ADSCrossRefGoogle Scholar
  9. [9]
    H. S. Newman, K. L. Davis, Journal of Applied Physics, 53, 7026-7032, 1982.ADSCrossRefGoogle Scholar
  10. [10]
    M. Jaworski, Supercond. Sci. Technol., 21, 065016, 2008.ADSCrossRefGoogle Scholar
  11. [11]
    N. Thyssen, A. V. Ustinov, H. Kohlstedt, Journal of Low Temperature Physics, 106, 201-206, 2006.ADSCrossRefGoogle Scholar
  12. [12]
    J. Mygind, N.F. Pedersen, Microwave Superconductivity, H. Weinstock and M. Nisenoff (ed), 1999.Google Scholar
  13. [13]
    N. Pedersen, A. V Ustinov, Supercond. Sci. Technol., 8, 389-401, 1995.Google Scholar
  14. [14]
    H. H. Sung, S. Y. Yang, H. E. Homg and H. C. Yang, IEEE TRANS. ON APPL.SUPER., 9, 3937-3940, 1999.Google Scholar
  15. [15]
    R. D. Parmentier, The New Superconducting Electronics, 2 ed H Weinstock and R W Ralston (Dordrecht: Kluwer) 1993.Google Scholar
  16. [16]
    R. G. Mints, I. B. Snapiro, Phys. Rev. B, 52, 9692, 1995.ADSCrossRefGoogle Scholar
  17. [17]
    L. N. Bulaevskii, A. E. Koshelev, Journal of superconductivity and novel magnetism, 19, 349, 2006.CrossRefGoogle Scholar
  18. [18]
    V. V. Kurin and A. V. Yulin, Phys. Rev. B 55, 11659, 1997.ADSCrossRefGoogle Scholar
  19. [19]
    A. A. Abdumalikov, M. V. Fistul, and A. V. Ustinov, Phys. Rev. B 72, 144526, 2005.ADSCrossRefGoogle Scholar
  20. [20]
    E. Goldobin, A. Wallraff, A. V. Ustinov, Journal of Law Temp. phys., 119, 589, 2000.CrossRefGoogle Scholar
  21. [21]
    A. A.Golubov, B.A.Malomed3 and A. V. Ustinov, Proceedings of the 21st International Conference on Low Temperature Physics, Czechoslovak Journal of Physics, 46, 573-574, 1996.Google Scholar
  22. [22]
    A. P Betenev, V. V. Kurin, Phys.Rev. B, 56, 7855-7857, 1997.Google Scholar
  23. [23]
    J. Caputo, N. Flytzanis, Y. Gaididei, and E. Vavalis, Phys. Rev., 54, 2092-2021, 1996.ADSGoogle Scholar
  24. [24]
    A. V. Ustinov, Long Josephson Junctions and StacksGoogle Scholar
  25. [25]
    J. C. Eilbeck, P. S. Lomdahl, O. H. Olsen, J. Appl. Phys. 57 (3), 861-866, 1985.Google Scholar
  26. [26]
    P. S. Lomdahl, O. H. Olsen, J. C. Eilbeck, J. Appl. Phys. 57 (3), 997-999, 1984.Google Scholar
  27. [27]
    N. F. Pederson, Solitons in Josephson transmission lines, in Solitons, S. E. Trullinger, V. E. Zakharov, and V. L. Prokovsky, eds., North-Holland, Amsterdam, 1986.Google Scholar
  28. [28]
    S.G. Lachenmann, G. Filatrella, T. Doderer, J.C. Fernandez, R.P Huebener, Phys. Rev. B, 48, 22 (1993).Google Scholar
  29. [29]
    J. C. Eilbeck, P. S. Lomdahl, O. H. Olsen, and M. R. Samuelsen, J. Appl. Phys., 57, 861, 1985.ADSCrossRefGoogle Scholar
  30. [30]
    S. N. Dorogovtse, A. N. Samukhin, Euro phys. Lett., 25, 693-698, 1994.ADSCrossRefGoogle Scholar
  31. [31]
    M. Cirillo, T. Doderer, S.G. Lachenmann, F. Santucci, and N. Grnbech-Jensen, Phys. Rev. B, 56, 11 889, 1997.Google Scholar
  32. [32]
    W. B. Zimmerman, World Scientific, Singapore, 2006.Google Scholar
  33. [33]
    V. P. Koshelets and S. V. Shitov, Supercond. Sci. Technol., 13, R53, 2000.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • H. Farhan-Hassan
    • 1
    • 2
  • D. R. Gulevich
    • 2
  • P. N. Dmitriev
    • 3
  • V. P. Koshelets
    • 3
  • F. V. Kusmartsev
    • 2
  1. 1.Department of PhysicsKing Abdulaziz University, JeddahJeddahKingdom of Saudi Arabia
  2. 2.Loughborough UniversityLoughboroughUK
  3. 3.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of ScienceMoscowRussia

Personalised recommendations