THz Waveguide and Bends Based on Metallic Photonic Crystals

  • Elif Degirmenci
  • Frederic Surre
  • Pascal Landais
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Transmission characteristics of the 2D metallic photonic crystals in air medium are investigated for THz waveguiding. Finite Element Method (FEM) simulations are used for both design and optimization of the structure in order to increase the transmission bandwidth. Bend waveguides are compared and the effect of rods on the corner of bending corner.


Photonic Crystal Photonic Crystal Structure Photonic Crystal Waveguide Bend Waveguide Bend Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Enterprise Ireland (Project No. PC/2008/0164).


  1. [1]
    Wang D.K., Mittleman D.M.: Metal Wires for Terahertz Wave Guiding. Nature 432, 376–379 (2004)ADSCrossRefGoogle Scholar
  2. [2]
    Jamison S.P., Mcgowan R.W., Grischkowsky D.: Single-Mode Waveguide Propagation and Reshaping of Sub-Ps Terahertz Pulses in Sapphire Fibers. App. Phys. Lett. 76, 1987–1989 (2000)ADSCrossRefGoogle Scholar
  3. [3]
    Mendis R., Grischkowsky D.: Plastic Ribbon THz Waveguides. J. App. Phys. 88, 7–9 (2000)CrossRefGoogle Scholar
  4. [4]
    Bingham A., Zhao Y., Grischkowsky D.: THz Parallel Plate Waveguides. App. Phys. Lett. 87, 051105 (2005)ADSCrossRefGoogle Scholar
  5. [5]
    Lin C., Chen C., Schneider G.J., Yao P., Shi S., Prather D.W.: Wavelength Scale Terahertz Two-Dimensional Photonic Crystal Waveguides. Opt Exp. 12, 5723–5728 (2004)ADSCrossRefGoogle Scholar
  6. [6]
    Chi C., Wang H., Pai S., Lai W., Horng S., Huang R.S.: Fabrication and Characterization of Terahertz Photonic Crystals. Proceedings of SPIE 46,19–30 (2002)ADSGoogle Scholar
  7. [7]
    Mekis A., Chen J.C., Kurland I., Fan S., Villeneuve P.R., Joannopoulos J.D.: High Transmission Through Sharp Bends in Photonic Crystal Waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)ADSCrossRefGoogle Scholar
  8. [8]
    Kuzmiak V., Maradudin A., Pincemin F.: Photonic Band Structures of Two-Dimensional Systems Containing Metallic Components. Phys. Rev. B 5016835–16844 (1994)Google Scholar
  9. [9]
    Sigalas M.M., Chan C.T., Ho K.M., Soukoulis C.M.: Metallic Photonic Band-Gap Materials. Phys. Rev. B 52, 11744–11751(1995)ADSCrossRefGoogle Scholar
  10. [10]
    El-Kady I., Sigalas M.M., Biswas R., Ho K.M., Soukoulis C.M.: Metallic Photonic Crystals at Optical Wavelengths. Phys. Rev. B 62, 15299–15302 (2000)ADSCrossRefGoogle Scholar
  11. [11]
    Gadot F., de Lustrac A., Lourtioz J.M.: High Transmission Defect Modes in Two-Dimensional Metallic Photonic Crystals. J. Appl. Phys. 85, 8499–8501 (1999)ADSCrossRefGoogle Scholar
  12. [12]
    Bayindir M., Cubukcu E., Bulu I., Tut T., Ozbay E., Soukoulis C.M.: Photonic Band Gaps, Defect Characteristics, and Waveguiding in Two-Dimensional Disordered Dielectric and Metallic Photonic Crystals. Phys. Rev. B 64, 195113 (2001)ADSCrossRefGoogle Scholar
  13. [13]
    Ordal M.A., Long L.L., Bell R.J., Bell S.E., Bell R.R., Alexander R.W., Ward C.A.: Optical Properties of The Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd. App. Opt. 22, 1099–1120 (1983)ADSCrossRefGoogle Scholar
  14. [14]
    Smirnova E.I., Chen C., Shapiro M.A., Sirigiri J.R., Temkin R.J.: Simulation of Photonic Band Gaps in Metal Rod Lattices For Microwave Applications. J. App. Phys. 91, 960–968 (2002)ADSCrossRefGoogle Scholar
  15. [15]
    Smajic J., Hafner C., and Erni D.: Design and Optimization of An Achromatic Photonic Crystal Bend. Opt. Exp. 11, 1378–1384 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Elif Degirmenci
    • 1
  • Frederic Surre
    • 1
  • Pascal Landais
    • 1
  1. 1.Dublin City UniversityDublinIreland

Personalised recommendations