Mid-Infrared GaInSb/AlGaInSb Quantum Well Laser Diodes Grown on GaAs

  • G. R. Nash
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The aluminium-gallium-indium-antimonide (Al x Ga y In\({}_{1-x-y}\)Sb) material system offers great promise for efficient laser diode operation across the 3 to 5 μm wavelength range. It offers an excellent compromise between the requirements for good electronic and optical confinement and those for low series resistance. In addition, the use of an active region comprising compressively strained Type-I quantum wells (QWs) is predicted to lead to increased gain, which leads to lower threshold current densities and hence reduced non-radiative Auger recombination. In this paper a review of recent progress in the development of this material system is given, including the demonstration of multi-quantum well samples exhibiting photoluminescence up to room temperature, and laser diodes operating up to 219 K.


Auger Recombination Threshold Current Density Interband Cascade Laser Continuous Wave Power Lower Threshold Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to acknowledge the work of T. Ashley, L. Buckle, S. D. Coomber, M. T. Emeny, H. Forman, A. Keir, S. J. Smith, C. J. Storey, and G. M. Williams from QinetiQ in Malvern, S. J. B. Przeslak (University of Bristol), P. J. Carrington, A. Krier, and M. Yin (Lancaster University), G. de Valicourt (now at Alcatel-Thales III-V Laboratory), and A. D. Andreev (University of Surrey).


  1. 1.
    M. Razeghi, M.: High-Performance InP-Based Mid-IR Quantum Cascade Lasers. IEEE J. Sel. Top. Quantum Electron. 15, 941–951 (2009)Google Scholar
  2. 2.
    Devenson, J., Teissier, R., Cathabard, O., Baranov, A.N.: InAs/AlSb quantum cascade lasers emitting below 3μm. Appl. Phys. Lett. 90, 111118 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    Yang, Q., Manz, C., Bronner, W., Lehmann, N., Fuchs, F., Köhler, K., Wagner, J.: High peak-power (10.5 W) GaInAs/AlGaAsSb quantum-cascade lasers emitting at λ ≃ 3.6 to 3.8μm. Appl. Phys. Lett. 90, 121134 (2007).Google Scholar
  4. 4.
    Zhang, S.Y., Revin, D.G., Commin, J.P., Kennedy, K., Krysa, A.B.,Cockburn, J.W.: Room temperature λ ≃ 3.3μm InP-based InGaAs/AlAs(Sb) quantum cascade lasers. Electron. Lett. 46, 439-440 (2010).Google Scholar
  5. 5.
    Vurgaftman, I., Canedy, C.L., Kim, C.S., Kim, M., Bewley, W.W., Lindle, J. R., Abell, J., Meyer, J.R.: Mid-infrared interband cascade lasers operating at ambient temperatures. New. J. Phys. 11, 125015 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    Hosoda, T., Kipshidze, G., Tsvid, G., Shterengas, L., Belenky, G.: Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3μm Wavelength Range. IEEE Photon. Technol. Lett. 22, 718-720 (2010).Google Scholar
  7. 7.
    Nash, G.R., Smith, S.J., Coomber, S.D., Przeslak, S., Andreev, A., Carrington, P., Yin, M., Krier, A., Buckle, L., Emeny, M.T., Ashley, T.: Midinfrared GaInSb/AlGaInSb quantum well laser diodes grown on GaAs. Appl. Phys. Lett. 91, 131118 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    Shterengas, L., Belenky, G., Kisin, M. V., Donetsky, D.: High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%. Appl. Phys. Lett. 90, 011119 (2007).Google Scholar
  9. 9.
    Yin, M., Nash, G.R., Coomber, S.D., Buckle, L., Carrington, P.J., Krier, A., Andreev, A., Przeslak, S.J.B., de Valicourt, G., Smith, S.J., Emeny, M.T, Ashley, T.: GaInSb/AlInSb multi-quantum-wells for mid-infrared lasers. Appl. Phys. Lett. 93, 121106 (2008).Google Scholar
  10. 10.
    Nash, G.R., Przeslak, S.J.B., Smith, S.J., de Valicourt, G., Andreev, A.D., Carrington, P.J., Yin, M., Krier, A., Coomber, S.D., Buckle, L., Emeny, M.T, Ashley, T.: Midinfrared GaInSb/AlGaInSb quantum well laser diodes operating above 200K. Appl. Phys. Lett. 94, 091111 (2009).Google Scholar
  11. 11.
    Andreev, A.D., O’Reilly, E.P., Adams, A.R., Ashley, T.: Theoretical performance and structure optimization of 3.5 to 4.5μm InGaSb/InGaAlSb multiple-quantum-well lasers. Appl. Phys. Lett. 78, 2640-2642 (2001).Google Scholar
  12. 12.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815-5875 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    Rainò, G., Salhi, A., Tasco, V., Intartaglia, R., Cingolani, R., Rouillard, Y., Tournié, E., De Giorgi, M.: Subpicosecond timescale carrier dynamics in GaInAsSb/AlGaAsSb double quantum wells emitting at 2.3μm. Appl. Phys. Lett. 92, 101931 (2008).Google Scholar
  14. 14.
    Pannekamp, J. Weber, S., Limmer, W., Sauer, R.: Temperature and excitation-density-dependent photoluminescence in a GaAs/AlGaAs quantum well. J. Luminescence 85, 37-43 (1999).Google Scholar
  15. 15.
    Fouquet, J.E., Siegman, A.E.: Room-temperature photoluminescence times in a GaAs/ AlxGa1 − xAs molecular beam epitaxy multiple quantum well structure. Appl. Phys. Lett. 46, 280-282 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    Ashley, T.: Type-I InSb-based mid-infrared diode lasers. Phil. Trans. R. Soc. Lond. A 359, 475-488 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    Shterengas, L., Belenky, G., Hosoda, T., Kipshidze, G., Suchalkin, S.: Continuous wave operation of diode lasers at 3.36μm at 12oC. Appl. Phys. Lett. 93, 011103 (2008).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.QinetiQ, Malvern Technology CentreMalvernUK

Personalised recommendations