Plasma Sensing Using Terahertz Waves

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The terahertz (THz) region of the electromagnetic spectrum, the far-infrared, has numerous applications towards characterizing low-energy phenomena in a number of wide and diverse materials. One of these exciting new areas is in plasma diagnostics. There are many experimental and theoretical methods to determine plasma parameters in a dc glow discharge. Pulsed terahertz (THz) techniques such as THz-Time Domain Spectroscopy (THz-TDS) can offer a non-contact solution towards characterizing various plasma properties. Further studies in the area of millimeter and microwave radiation have shown that the interaction of the THz radiation with fundamental plasma such as DC glow discharge plasma can be utilized towards development of inexpensive detection schemes and detectors. Here we discuss the importance of these schemes in lieu of imaging systems and describe experiments we have conducted which support these results. In particular we find that a typical Drude model approach is insufficient in describing the transmission of the THz waves through the “cold” plasma. Results are given in the area of this promising research.

Keywords

Glow Discharge Drude Model Terahertz Wave Glow Discharge Plasma Pulse Terahertz 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author would like to acknowledge the support of The Scientific Research Council of Turkey (TUBITAK Grant # 107T742) and helpful discussions on plasma dynamics with Dr. Demiral Akbar and Ms. Zahide Tosun.

References

  1. [1]
    D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman: Journal of the Optical Society of America A 1, 1278 (1984)ADSGoogle Scholar
  2. [2]
    D. H. Auston and M. C. Nuss: IEEE Journal of Quantum Electronics 24, 184-197 (1988)ADSCrossRefGoogle Scholar
  3. [3]
    X.-C. Zhang, Y. Jin, B. B. Hu, X. Li and D. H. Auston: Superlattices and Microstructures 12, 487-490 (1992)ADSMATHCrossRefGoogle Scholar
  4. [4]
    I. Brener, D. Dykarr, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, K. West, and M. C. Nuss: Opt. Lett. 21, 1924-1926 (1996)ADSCrossRefGoogle Scholar
  5. [5]
    B. B. Hu and M. C. Nuss: Optics Letters 20, 1716 (1995)ADSCrossRefGoogle Scholar
  6. [6]
    Q. Wu, T. D. Hewitt, and X.-C. Zhang: Applied Physics Letters 69, 1026 (1996)ADSCrossRefGoogle Scholar
  7. [7]
    A. Nahata, J. Yardley, and T. Heinz: Applied Physics Letters 81, 963 (2002)ADSCrossRefGoogle Scholar
  8. [8]
    D. M. Mittleman, R. H. Jacobsen, M. C. Nuss: IEEE Journal of Selected Topics in Quantum Electronics 2, 679-692 (1996)CrossRefGoogle Scholar
  9. [9]
    E. R. Brown: Terahertz Sensing Technology, vol 2: Emerging Scientific Applications & Novel Device Concepts. World Scientific, Singapore (2003)Google Scholar
  10. [10]
    P. H. Siegel IEEE Microwave Theory and Techniques 50, 910 (2002)Google Scholar
  11. [11]
    D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber: J. Appl. Phys. 103, 093306 (2008)ADSCrossRefGoogle Scholar
  12. [12]
    B. H. Kolner, R. A. Buckles, P. M. Conklin, and R. P. Scott: IEEE Journal of Selected Topics in Quantum Electronics 14, 505-512 (2008)CrossRefGoogle Scholar
  13. [13]
    S Ebbinghaus, K Schrck, J C Schauer, E Brndermann, M Heyden, G Schwaab, M Bke, JWinter, M Tani and M Havenith: Plasma Sources Sci. Technol. 15, 2-77 (2006)Google Scholar
  14. [14]
    S. P. Jamison, Jingling Shen, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski: J. Appl. Phys. 93, 4334-4336 (2003)Google Scholar
  15. [15]
    B. H. Kolner, P. M. Conklin, N. K. Fontaine, R. A. Buckles, and R. P. Scott: Appl. Phys. Lett. 87, 151501 (2005)ADSCrossRefGoogle Scholar
  16. [16]
    M. Hangyo, M. Tani, T. Nagashima, H. Kitahara and H. Sumikura: Plasma and Fusion Research: Regular Articles 2, S1020 (2007)CrossRefGoogle Scholar
  17. [17]
    J. Hopwood, C. R. Guarnieri, S. J. Whitehair, and J. J. Cuomo: J. Vac. Sci. Technol. 11, 152 (1993)ADSGoogle Scholar
  18. [18]
    H. R. Griem: Plasma Spectroscopy. McGraw-Hill, New York (1964).Google Scholar
  19. [19]
    M. A. Heald and C. B. Wharton: Plasma Diagnostics with Microwaves. Wiley, New York (1965).Google Scholar
  20. [20]
    D. B. Gurevich and I. V. Podmoshenskii: Opt. Spektrosk.,USSR 15, 587 (1963)Google Scholar
  21. [21]
    K. Krushelnick, A. Ting, C. I. Moore, H. R. Burris, E. Esarey, P. Sprangle, and M. Baine: Phys. Rev. Lett. 78, 4047 (1997)ADSCrossRefGoogle Scholar
  22. [22]
    J. Liu and X.-C. Zhang Applied Physics Letters 96, 041505 (2010)Google Scholar
  23. [23]
    Z. Mics, F. Kadlec, P. Kuel, and P. Jungwirth: Chem. Phys. Lett. 465, 20-24 (2008)ADSCrossRefGoogle Scholar
  24. [24]
    Z. Mics, F. Kadlec, P. Kuel, P. Jungwirth, Stephen E. Bradforth, and V. Ara Apkarian: Journal of Chemical Physics 123, 104310 (2005)Google Scholar
  25. [25]
    J. Dai and X.-C. Zhang: Applied Physics Letters 94, 021117 (2009)ADSCrossRefGoogle Scholar
  26. [26]
    N. S. Kopeika and N. H. Farhat: IEEE Transactions on Electro Dev. ED-22, 534-548 (1975)Google Scholar
  27. [27]
    N. S. Kopeika: International journal of Infrared and Millimeter Waves 5, 1333 (1984)ADSCrossRefGoogle Scholar
  28. [28]
    A. Abramovich, N. S. Kopeika, and D. Rozban: IEEE Sensors Journal 9, 1181-1184 (2009)CrossRefGoogle Scholar
  29. [29]
    V.S. Bazhanov and G.A. Markov Translated from Izvestiya Vysshikh Uchebnykh Zavedenii: Radiofizika 19, 1246-1251 (1976)Google Scholar
  30. [30]
    B.S.Lazebnik, G.A. Markov and I.V. Khazanov: Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 21, 1685-1690 (1978)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Physics DepartmentMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations