Advertisement

The Informatics of High-Throughput Mouse Phenotyping: EUMODIC and Beyond

  • John M. Hancock
  • Hilary Gates
Chapter

Abstract

Now that not only the mouse genome sequence but also the ability to carry out high throughput manipulation of mouse ES cells is in place, projects are underway to understand the functions of individual mouse genes in a systematic manner. Central to this will be the systematic analysis of the phenotypes of mutant mouse lines. EUMODIC, the first large-scale project to screen mouse knockout lines for disease-related phenotypes is underway and experience shows the necessity of a well-organised bioinformatics infrastructure for the capture, analysis and dissemination of the data emerging from such projects. Here we discuss the fundamental requirements for such a bioinformatics infrastructure, progress so far and the developments that will be required in future.

Keywords

Phenotype Data Laboratory Information Management System Mammalian Phenotype Open Source Software Project Phenotyping Centre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the many contributors to the development of the ideas described here including the developers of the Mouse Genome Database, Mouse Phenome Database and the partners in EUMORPHIA and EUMODIC. We thank the UK Medical Research Council and the European Commission for financial support. EUMORPHIA and EUMODIC were funded by the European Commission under contract numbers QLG2-CT-2002-00930 and LSHG-CT-2006-037188.

References

  1. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1), 25–29.CrossRefPubMedGoogle Scholar
  2. Beck, T., Morgan, H., Blake, A., Wells, S., Hancock, J. M., & Mallon, A. -M. (2009). Practical application of ontologies to annotate and analyse large scale raw mouse phenotype data. BMC Bioinformatics, 10(Suppl 5), S2.CrossRefPubMedGoogle Scholar
  3. Blake, J. A., Bult, C. J., Eppig, J. T., Kadin, J. A., & Richardson, J. E. (2009). The mouse genome database Genotypes::Phenotypes. Nucleic Acids Research, 37(Database issue), D712–719.Google Scholar
  4. Bogue, M. A., & Grubb, S. C. (2004). The mouse phenome project. Genetica, 122(1), 71–74.CrossRefPubMedGoogle Scholar
  5. Brown, S. D., Chambon, P., & de Angelis, M. H. (2005). EMPReSS: Standardized phenotype screens for functional annotation of the mouse genome. Nature Genetics, 37(11), 1155.CrossRefPubMedGoogle Scholar
  6. Brown, S. D. M., Hancock, J. M., & Gates, H. (2006). Understanding mammalian genetic systems: The challenge of phenotyping in the mouse. PLoS Genetics, 2(8), e118.CrossRefPubMedGoogle Scholar
  7. Brown, S. D., Wurst, W., Kuhn, R., & Hancock, J. (2009). The functional annotation of mammalian genomes: The challenge of phenotyping. Annual Review of Genetics, 43, 305–333.CrossRefPubMedGoogle Scholar
  8. Collins, F. S., Rossant, J., & Wurst, W. (2007). A mouse for all reasons. Cell, 128(1), 9–13.CrossRefPubMedGoogle Scholar
  9. Friedel, R. H., Seisenberger, C., Kaloff, C., & Wurst, W. (2007). EUCOMM–the European conditional mouse mutagenesis program. Briefings in Functional Genomics Proteomic, 6(3), 180–185.CrossRefGoogle Scholar
  10. Gkoutos, G. V., Green, E. C. J., Mallon, A. -M., Hancock, J. M., & Davidson, D. (2004). Building mouse phenotype ontologies. Pacific Symposium on Biocomputing, 9, 178–189.Google Scholar
  11. Gkoutos, G. V., Green, E. C. J., Mallon, A. -M., Hancock, J. M., & Davidson, D. (2005). Using ontologies to describe mouse phenotypes. Genome Biology, 6(1), R8.CrossRefPubMedGoogle Scholar
  12. Green, E. C. J., Gkoutos, G. V., Lad, H. V., Blake, A., Weekes, J., & Hancock, J. M. (2005). EMPReSS: European mouse phenotyping resource for standardised screens. Bioinformatics, 21(11), 2930–2931.CrossRefPubMedGoogle Scholar
  13. Grubb, S. C., Maddatu, T. P., Bult, C. J., & Bogue, M. A. (2009). Mouse phenome database. Nucleic Acids Res, 37(Database issue), D720–730.Google Scholar
  14. HUGO Summary of Principles Agreed at the First International Strategy Meeting on Human Genome Sequencing Bermuda, 25–28 February 1996. 1996:available at http://www.ornl.gov/sci/techresources/Human_Genome/research/bermuda.shtml.
  15. Hancock, J. M., Mallon, A. M., Beck, T., Gkoutos, G. V., Mungall, C., & Schofield, P. N. (2009). Mouse, man, and meaning: Bridging the semantics of mouse phenotype and human disease. Mammalian Genome, 20(8), 457–461.CrossRefPubMedGoogle Scholar
  16. Hancock, J. M., Schofield, P. N., Chandras, C., Zouberakis, M., Aidinis, V., Smedley, D., et al. (2008). Consortium: CASIMIR: Coordination and Sustainability of International Mouse Informatics Resources. In: 8th IEEE International Conference on Bioinformatics and Bioengineering: Oct 8–10 2008, Athens, Greece: IEEE, pp. 382–387.Google Scholar
  17. Hayamizu, T. F., Mangan, M., Corradi, J. P., Kadin, J. A., & Ringwald, M. (2005). The adult mouse anatomical dictionary: A tool for annotating and integrating data. Genome Biology, 6, R29.Google Scholar
  18. Mallon, A. M., Blake, A., & Hancock, J. M. (2008). EuroPhenome and EMPReSS: Online mouse phenotyping resource. Nucleic Acids Research, 36(Database issue), D715–718.Google Scholar
  19. Morgan, H., Beck, T., Blake, A., Gates, H., Adams, N., Debouzy, G., et al. (2010). EuroPhenome: A repository for high-throughput mouse phenotyping data. Nucleic Acids Research, 38(Database Issue), D577–D585.CrossRefPubMedGoogle Scholar
  20. Mouse Phenotype Database Integration Consortium (2007). Integration of mouse phenome data resources. Genome Biology, 18, 157–163.Google Scholar
  21. Rosenthal, N., & Brown, S. (2007). The mouse ascending: Perspectives for human-disease models. Nature Cell Biology, 9(9), 993–999.CrossRefPubMedGoogle Scholar
  22. Schofield, P. N., Bubela, T., Weaver, T., Portilla, L., Brown, S. D., Hancock, J. M., Hrabede Angelis M., Rosenthal N., et al. (2009). Post-publication sharing of data and tools. Nature, 461, 171–173.CrossRefPubMedGoogle Scholar
  23. Smith, C. L., Goldsmith, C. A., & Eppig, J. T. (2005). The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biology, 6(1), R7.CrossRefPubMedGoogle Scholar
  24. Taylor, C. F., Field, D., Sansone, S. A., Aerts, J., Apweiler, R., Ashburner, M., et al. (2008). Promoting coherent minimum reporting guidelines for biological and biomedical investigations: The MIBBI project. Nature biotechnology, 26(8), 889–896.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.MRC Mammalian Genetics UnitHarwellUK

Personalised recommendations