Skip to main content

Genomic Insulators in Transgenic Animals

  • Chapter
  • First Online:
Mouse as a Model Organism

Abstract

Vertebrate genomes are functionally and structurally organised as gene expression domains. These domains contain all regulatory elements required for the gene (or genes) to be expressed correctly, and include those required to shield each domain, thereby blocking any non-desirable interaction from their neighbours. These elements are known as “boundaries” or “insulators” and their function is to insulate gene expression domains in genomes allowing the protected locus to be expressed according to internal regulatory elements, without suffering from the adverse effects of flanking loci and without transmitting the effect of the internal regulatory elements beyond the protected domain. Insulators can act as “enhancer blockers”, preventing a distal enhancer from interacting with a proximal promoter, when placed in between, and/or as “barriers”, preventing chromosomal position effects associated with the genomic location. In addition, insulators are known to contribute to the chromatin and nuclear structural organization. A variety of molecular mechanisms have been associated with boundary function, probably reflecting the diversity of functional elements that can efficiently insulate genomic sequences. Insulator elements can be used in biotechnological applications, as spacers, as boundaries, and be applied to any gene expression construct to be used in gene transfer experiments (i.e. transgenesis, gene therapy), thereby preventing the inappropriate expression patterns of constructs and shielding them from neighbouring sequences surrounding the place of insertion in the host genomes.

Contribution for the book edited by Cord Brakebusch on the talks presented at the NorIMM (Nordic Infrastructure for Mouse Models) Symposium, held in Rovaniemi (Finland), June 2–4, 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beermann, F., Ruppert, S., Hummler, E., & Schütz, G. (1991). Tyrosinase as a marker for transgenic mice. Nucleic Acids Research, 19, 958.

    Google Scholar 

  • Beermann, F., Schmid, E., & Schütz, G. (1992). Expression of the mouse tyrosinase gene during embryonic development: Recapitulation of the temporal regulation in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 89, 2809–2813.

    Article  CAS  PubMed  Google Scholar 

  • Bell, A. C., West, A. G., & Felsenfeld, G. (2001). Insulators and boundaries: Versatile regulatory elements in the eukaryotic genome. Science, 291, 447–450.

    Article  CAS  PubMed  Google Scholar 

  • Bessa, J., Tena, J. J., de la Calle-Mustienes, E., Fernández-Miñán, A., Naranjo, S., Fernández, A., Montoliu, L., Akalin, A., Lenhard, B., Casares, F., & Gómez-Skarmeta, J. L. (2009). Zebrafish enhancer detection (ZED) vector: A new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Developmental Dynamics, 238, 2409–2417.

    Article  CAS  PubMed  Google Scholar 

  • Boëda, B., Weil, D., & Petit, C. (2001). A specific promoter of the sensory cells of the inner ear defined by transgenesis. Human Molecular Genetics, 10, 1581–1589.

    Article  PubMed  Google Scholar 

  • Burdon, T., Sankaran, L., Wall, R. J., Spencer, M., & Hennighausen, L. (1991). Expression of a whey acidic protein transgene during mammary development. Evidence for different mechanisms of regulation during pregnancy and lactation. Journal of Biological Chemistry, 266, 6909–6914.

    CAS  PubMed  Google Scholar 

  • Capelson, M., & Corces, V. G. (2004). Boundary elements and nuclear organization. Biology of the Cell, 96, 617–629.

    Article  CAS  PubMed  Google Scholar 

  • Ciavatta, D., Kalantry, S., Magnuson, T., & Smithies, O. (2006). A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proceedings of the National Academy of Sciences of the United States of America, 103, 9958–9963.

    Article  CAS  PubMed  Google Scholar 

  • de Laat, W., & Grosveld, F. (2003). Spatial organization of gene expression: The active chromatin hub. Chromosome Research, 11, 447–459.

    Article  PubMed  Google Scholar 

  • Devinoy, E., Montoliu, L., Baranyi, M., Thépot, D., Hiripi, L., Fontaine, M. L., Bodrogi, L., & Bosze, Z. (2005). Analysis of the efficiency of the rabbit whey acidic protein gene 5 flanking region in controlling the expression of homologous and heterologous linked genes. Journal of Dairy Science, 72, 113–119.

    CAS  Google Scholar 

  • Devinoy, E., Thépot, D., Stinnakre, M. G., Fontaine, M. L., Grabowski, H., Puissant, C., Pavirani, A., & Houdebine, L. M. (1994). High level production of human growth hormone in the milk of transgenic mice: The upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Research, 3, 79–89.

    Article  CAS  PubMed  Google Scholar 

  • Dillon, N., & Sabbattini, P. (2000). Functional gene expression domains: Defining the functional unit of eukaryotic gene regulation. Bioessays, 22, 657–665.

    Article  CAS  PubMed  Google Scholar 

  • Dillon, N. (2006). Gene regulation and large-scale chromatin organization in the nucleus. Chromosome Research, 14, 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Frazar, T. F., Weisbein, J. L., Anderson, S. M., Cline, A. P., Garrett, L. J., Felsenfeld, G., Gallagher, P. G., & Bodine, D. M. (2003). Variegated expression from the murine band 3 (AE1) promoter in transgenic mice is associated with mRNA transcript initiation at upstream start sites and can be suppressed by the addition of the chicken beta-globin 5 HS4 insulator element. Molecular Cell Biology, 23, 4753–4763.

    Article  CAS  Google Scholar 

  • Giménez, E., Giraldo, P., Jeffery, G., & Montoliu, L. (2001). Variegated expression and delayed retinal pigmentation during development in transgenic mice with a deletion in the locus control region of the tyrosinase gene. Genesis, 30, 21–25.

    Article  PubMed  Google Scholar 

  • Giménez, E., Lavado, A., Giraldo, P., & Montoliu, L. (2003). Tyrosinase gene expression is not detected in mouse brain outside the retinal pigment epithelium cells. European Journal of Neuroscience, 18, 2673–2676.

    Article  PubMed  Google Scholar 

  • Giraldo, P., Martínez, A., Regales, L., Lavado, A., García-Díaz, A., Alonso, A., Busturia, A., & Montoliu, L. (2003b). Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity. Nucleic Acids Research, 31, 6290–6305.

    Article  CAS  PubMed  Google Scholar 

  • Giraldo, P., & Montoliu, L. (2001). Size matters: Use of YACs, BACs and PACs in transgenic animals. Transgenic Research, 10, 83–103.

    Article  CAS  PubMed  Google Scholar 

  • Giraldo, P., Rival-Gervier, S., Houdebine, L. M., & Montoliu, L. (2003a). The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Research, 12,751–755.

    Article  CAS  PubMed  Google Scholar 

  • Guglielmi, L., Truffinet, V., Carrion, C., Le Bert, M., Cogné, N., Cogné, M., & Denizot, Y. (2005). The 5HS4 insulator element is an efficient tool to analyse the transient expression of an Em mu-GFP vector in a transgenic mouse model. Transgenic Research, 14, 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Houdebine, L. M. (2010). Design of expression cassettes for the generation of transgenic animals (including insulators). Methods in Molecular Biology, 597, 55–69.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao, Y. C., Chang, H. H., Tsai, C. Y., Jong, Y. J., Horng, L. S., Lin, S. F., & Tsai, T. F. (2004). Coat color-tagged green mouse with EGFP expressed from the RNA polymerase II promoter. Genesis, 39, 122–129.

    Article  CAS  PubMed  Google Scholar 

  • Jin, C., McKeehan, K., & Wang, F. (2003). Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle, and ductus deferens. Prostate, 57, 160–164.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. H., Abdullaev, Z. K., Smith, A. D., Ching, K. A., Loukinov, D. I., Green, R. D., Zhang, M. Q., Lobanenkov, V. V., & Ren, B. (2007). Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell, 128, 1231–1245.

    Article  CAS  PubMed  Google Scholar 

  • Klopstock, N., Levy, C., Olam, D., Galun, E., & Goldenberg, D. (2007). Testing transgenic regulatory elements through live mouse imaging. FEBS Letters, 581, 3986–3990.

    Article  CAS  PubMed  Google Scholar 

  • Lavado, A., Olivares, C., García-Borrón, J. C., & Montoliu, L. (2005). Molecular basis of the extreme dilution mottled mouse mutation: A combination of coding and noncoding genomic alterations. Journal of Biological Chemistry, 280, 4817–4824.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Zhang, M., Han, H., Rohde, A., & Stamatoyannopoulos, G. (2002). Evidence that DNase I hypersensitive site 5 of the human beta-globin locus control region functions as a chromosomal insulator in transgenic mice. Nucleic Acids Research, 30, 2484–2491.

    Article  CAS  PubMed  Google Scholar 

  • Lunyak, V. V., Prefontaine, G. G., Núñez, E., Cramer, T., Ju, B. G., Ohgi, K. A., Hutt, K., Roy, R., García-Díaz, A., Zhu, X., Yung, Y., Montoliu, L., Glass, C. K., & Rosenfeld, M. G. (2007). Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science, 317, 248–251.

    Article  CAS  PubMed  Google Scholar 

  • Lunyak, V. V. (2008). Boundaries. Boundaries… Boundaries??? Current Opinion in Cell Biology, 20, 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Millot, B., Montoliu, L., Fontaine, M. L., Mata, T., & Devinoy, E. (2003). Hormone-induced modifications of the chromatin structure surrounding upstream regulatory regions conserved between the mouse and rabbit whey acidic protein genes. Biochemical Journal, 372, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Moltó, E., Fernández, A., & Montoliu, L. (2009). Boundaries in vertebrate genomes: Different solutions to adequately insulate gene expression domains. Briefings in functional genomics & proteomics, 8, 283–296.

    Article  Google Scholar 

  • Montazer-Torbati, M. B., Hue-Beauvais, C., Droineau, S., Ballester, M., Coant, N., Aujean, E., Petitbarat, M., Rijnkels, M., & Devinoy, E. (2008). Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes. Experimental Cell Research, 314, 975–987.

    Article  CAS  PubMed  Google Scholar 

  • Montoliu, L., Roy, R., Regales, L., & García-Díaz, A. (2009). Design of vectors for transgene expression: The use of genomic comparative approaches. Comparative Immunology, Microbiology and Infectious Diseases, 32, 81–90.

    Article  PubMed  Google Scholar 

  • Montoliu, L., Umland, T., & Schütz, G. (1996). A locus control region at –12 kb of the tyrosinase gene. EMBO Journal, 15, 6026–6034.

    CAS  PubMed  Google Scholar 

  • Montoliu, L. (2002). Gene transfer strategies in animal transgenesis. Cloning Stem Cells, 4, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, P. N., Giraldo, P., Cozar, P., Pozueta, J., Jiménez, A., Montoliu, L., & Gutiérrez-Adán, A. (2004). Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biology of Reproduction, 71, 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  • Moriyama, A., Kii, I., Sunabori, T., Kurihara, S., Takayama, I., Shimazaki, M., Tanabe, H., Oginuma, M., Fukayama, M., Matsuzaki, Y., Saga, Y., & Kudo, A. (2007). GFP transgenic mice reveal active canonical Wnt signal in neonatal brain and in adult liver and spleen. Genesis, 45, 90–100.

    Article  CAS  PubMed  Google Scholar 

  • Oetting, W. S., Fryer, J. P., Shriram, S., & King, R. A. (2003). Oculocutaneous albinism type 1: The last 100 years. Pigment Cell Research, 16, 307–311.

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson, R., Renkawitz, R., & Lobanenkov, V. (2001). CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends in Genetics, 17, 520–527.

    Article  CAS  PubMed  Google Scholar 

  • Pantano, T., Rival-Gervier, S., Prince, S., Menck-Le Bourhis, C., Maeder, C., Viglietta, C., Houdebine, L. M., & Jolivet, G. (2003). In vitro and in vivo effects of a multimerized alphas 1-casein enhancer on whey acidic protein gene promoter activity. Molecular Reproduction and Development, 65, 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Piletz, J. E., Heinlen, M., & Ganschow, R. E. (1981). Biochemical characterization of a novel whey protein from murine milk. Journal of Biological Chemistry, 256, 11509–11516.

    CAS  PubMed  Google Scholar 

  • Potts, W., Tucker, D., Wood, H., & Martin, C. (2000). Chicken beta-globin 5HS4 insulators function to reduce variability in transgenic founder mice. Biochemical and Biophysical Research Communications, 273, 1015–1018.

    Article  CAS  PubMed  Google Scholar 

  • Ray, K., Chaki, M., & Sengupta, M. (2007). Tyrosinase and ocular diseases: some novel thoughts on the molecular basis of oculocutaneous albinism type 1. Progress in Retinal and Eye Research, 26, 323–358.

    Article  CAS  PubMed  Google Scholar 

  • Recillas-Targa, F., Valadez-Graham, V., & Farrell, C. M. (2004). Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays, 26, 796–807.

    Article  CAS  PubMed  Google Scholar 

  • Regales, L., Giraldo, P., García-Díaz, A., Lavado, A., & Montoliu, L. (2003). Identification and functional validation of a 5 upstream regulatory sequence in the human tyrosinase gene homologous to the locus control region of the mouse tyrosinase gene. Pigment Cell Research, 16, 685–692.

    Article  CAS  PubMed  Google Scholar 

  • Rival-Gervier, S., Pantano, T., Viglietta, C., Maeder, C., Prince, S., Attal, J., Jolivet, G., & Houdebine, L. M. (2003a). The insulator effect of the 5HS4 region from the beta-globin chicken locus on the rabbit WAP gene promoter activity in transgenic mice. Transgenic Research, 12, 723–730.

    Article  CAS  PubMed  Google Scholar 

  • Rival-Gervier, S., Thépot, D., Jolivet, G., & Houdebine, L. M. (2003b). Pig whey acidic protein gene is surrounded by two ubiquitously expressed genes. Biochimica et Biophysica Acta, 1627, 7–14.

    CAS  PubMed  Google Scholar 

  • Rival-Gervier, S., Viglietta, C., Maeder, C., Attal, J., & Houdebine, L. M. (2002). Position-independent and tissue-specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice. Molecular Reproduction and Development, 63, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Saidi, S., Rival-Gervier, S., Daniel-Carlier, N., Thépot, D., Morgenthaler, C., Viglietta, C., Prince, S., Passet, B., Houdebine, L. M., & Jolivet, G. (2007). Distal control of the pig whey acidic protein (WAP) locus in transgenic mice. Gene, 401, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Slabaugh, M. B., Lieberman, M. E., Rutledge, J. J., & Gorski, J. (1982). Ontogeny of growth hormone and prolactin gene expression in mice. Endocrinology, 110, 1489–1497.

    Article  CAS  PubMed  Google Scholar 

  • Taboit-Dameron, F., Malassagne, B., Viglietta, C., Puissant, C., Leroux-Coyau, M., Chéreau, C., Attal, J., Weill, B., & Houdebine, L. M. (1999). Association of the 5HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Research, 8, 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Truffinet, V., Guglielmi, L., Cogné, M., & Denizot, Y. (2005). The chicken beta-globin HS4 insulator is not a silver bullet to obtain copy-number dependent expression of transgenes in stable B cell transfectants. Immunology Letters, 96, 303–304.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, J. A, & Felsenfeld, G. (2007). We gather together: insulators and genome organization. Current Opinion in Genetics & Development, 17, 400–407.

    Article  CAS  Google Scholar 

  • West, A. G., Gaszner, M., & Felsenfeld, G. (2002). Insulators: Many functions, many mechanisms. Genes & Development, 16, 271–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluís Montoliu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moltó, E., Vicente-García, C., Fernández, A., Montoliu, L. (2011). Genomic Insulators in Transgenic Animals. In: Brakebusch, C., Pihlajaniemi, T. (eds) Mouse as a Model Organism. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0750-4_1

Download citation

Publish with us

Policies and ethics