Some Consideration on Derivative Approximation of Particle Methods

  • Hitoshi Matsubara
  • Shigeo Iraha
  • Genki Yagawa
  • Doosam Song
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 25)

Abstract

In this paper, the accuracy of the derivative approximation of the particle methods is discussed. Especially, we show that the issue of decreasing accuracy on a boundary area in the SPH method is due to the lack of the boundary integration. Through some numerical examples, the convergence of error norm of energy obtained by the SPH and the MPS methods is studied.

Keywords

Computational Fluid Dynamics Boundary Area Boundary Integration Smooth Particle Hydrodynamic Particle Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zienkiewicz, O.C., Taylor, R.L., Finite Element Method, 5th ed., Vol. 1, Butterworth-Heinemann, Oxford, 2000.Google Scholar
  2. 2.
    Oñate, E., Idelsohn, S.R., Celiguetaa,M.A., Rossia, R., Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows, Computer Methods in Applied Mechanics and Engineering, 197(15):1777–1800, 2008.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Yagawa, G., Node-by-node parallel finite elements, a virtually meshless method, International Journal for Numerical Methods in Engineering 60(1):69–102, 2004.MATHCrossRefGoogle Scholar
  4. 4.
    Matsubara, H., Yagawa, G., Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics, Interaction and Multiscale Mechanics: An International Journal 2(3):277–293, 2009.Google Scholar
  5. 5.
    Yagawa, G., Matsubara, H., Enriched free mesh method: An accuracy improvement for nodebased FEM, Computational Plasticity 7:207–219, 2007.CrossRefGoogle Scholar
  6. 6.
    Tian, R., Matsubara, H., Yagawa, G., Advanced 4-node tetrahedrons, International Journal for Numerical Methods in Engineering 68(12):1209–1231, 2006.MATHCrossRefGoogle Scholar
  7. 7.
    Li, S., Liu, W.K., Meshfree Particle Methods, Springer, Heidelberg, 2007.Google Scholar
  8. 8.
    Lucy, L.B., A numerical approach to the testing of the fission hypothesis, The Astronomical Journal 82:1013–1024, 1977.CrossRefGoogle Scholar
  9. 9.
    Gingold, R.A.,Monaghan, J.J., Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. R. Astr. Soc. 181:375–389, 1977.MATHGoogle Scholar
  10. 10.
    Li, S, Liu, W.K., Meshfree and particle methods and their applications, Applied Mechanics Review 55(1):1–34, 2002.CrossRefGoogle Scholar
  11. 11.
    Monaghan, J.J., Simulating free surface flows with SPH, Journal of Computational Physics 110:399–406, 1994.MATHCrossRefGoogle Scholar
  12. 12.
    Belytschko, T., Krograuz, Y., Organ, D., Fleming, M., Krysl, P., Meshless methods: An overview and recent developments, Computer Methods in Applied Mechanics and Engineering 139:3–47, 1996.MATHCrossRefGoogle Scholar
  13. 13.
    Libersky, L.D., Petschek, A.G., Smooth particle hydrodynamics with strength of materials. In Advances in the Free-Lagrange Method, H.E. Trease, M.J. Fritts, W.P. Crowley (eds.), Lecture Notes in Physics, Vol. 395, pp. 248–257, Springer, 1993.Google Scholar
  14. 14.
    Randles, P.W., Libersky, L.D., Smoothed particle hydrodynamics: Some recent improvements and applications, Computer Methods in Applied Mechanics and Engineering 139:375–408, 1996.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chen, J.K., Beraun, J.E., Jih, C.J., An improvement for tensile instability in smoothed particle hydrodynamics, Computational Mechanics 23:279–287, 1999.MATHCrossRefGoogle Scholar
  16. 16.
    Chen, J.K., Beraun, J.E., Jih, C.J., Completeness of corrective smoothed particle method for linear elastodynamics, Computational Mechanics 24:273–285, 1999.MATHCrossRefGoogle Scholar
  17. 17.
    Chen, J.K., Beraun, J.E., Carney, T.C., A corrective smoothed particle method for boundary value problems in heat conduction, International Journal for Numerical Methods in Engineering 46:231–252, 1999.MATHCrossRefGoogle Scholar
  18. 18.
    Koshizuka, S., Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear Science and Engineering 123:421–434, 1996.Google Scholar
  19. 19.
    Chikazawa, Y., Koshizuka, S., Oka, Y., Numerical analysis of three dimensional sloshing in an elastic cylindrical tank using moving particle semi-implicit method, Computational Fluid Dynamics 9:376–383, 2001.Google Scholar
  20. 20.
    Koshizuka, K., Nobe, A., Oka, Y., Numerical analysis of breaking waves using the moving particle semi-implicit method, International Journal for Numerical Methods in Fluids 26(7):751–769, 1998.MATHCrossRefGoogle Scholar
  21. 21.
    Iribe, T., Fujisawa, T., Koshizuka, S., Reduction of communication between nodes on largescale simulation of the particle method, Transactions of JSCES, No. 20080020, 2008.Google Scholar
  22. 22.
    Swegle, J.W., Attaway, S.W., Heinstein, M.W., Mello, F.J., Hicks, D.L., An analysis of smoothed particle hydrodynamics, SANDIA Report SAND93-2513, 1994.CrossRefGoogle Scholar
  23. 23.
    Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, McGraw-Hill, New York, 1979.Google Scholar
  24. 24.
    Augarde, C.E., Deeks, A.J., The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis, Finite Elements in Analysis and Design 44:595–601, 2008.CrossRefGoogle Scholar
  25. 25.
    Lancaster, P., Salkauskas, K., Surfaces generated by moving least squares methods, Mathematics of Computation 37(155):141–158, 1981.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hitoshi Matsubara
    • 1
  • Shigeo Iraha
    • 1
  • Genki Yagawa
    • 2
  • Doosam Song
    • 3
  1. 1.Department of Civil Engineering and ArchtectureUniversity of the RyukyusNishiharaJapan
  2. 2.Center for Computational Mechanics ResearchTokyo UniversityTokyoJapan
  3. 3.School of ArchitectureSungkyunkwan UniversitySuwonKorea

Personalised recommendations