Large Scale Simulation of Industrial, Engineering and Geophysical Flows Using Particle Methods

  • Paul W. Cleary
  • Mahesh Prakash
  • Matt D. Sinnott
  • Murray Rudman
  • Raj Das
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 25)


Particle based computational methods, such as DEM and SPH, are shown to be widely applicable as tools to understand complex large scale particulate and fluid flows in industrial processing, civil, marine and coastal engineering and geohazards.


Tsunami Wave Rogue Wave Smooth Particle Hydrodynamic Particle Method Hydraulic Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cundall, P.A., Strack, O.D.L., A discrete numerical model for granular assemblies. Geotechnique, 29:47–65, 1979.CrossRefGoogle Scholar
  2. 2.
    Walton, O.R., Numerical simulation of inelastic frictional particle-particle interaction (Chapter 25). In: Particulate Two-phase Flow, M.C. Roco (ed.), pp. 884–911, 1994.Google Scholar
  3. 3.
    Campbell, C.S., Rapid granular flows. Annual Review of Fluid Mechanics 22:57–92, 1990.CrossRefGoogle Scholar
  4. 4.
    Haff, P.K.,Werner, B.T., Powder Technology 48:239, 1986.Google Scholar
  5. 5.
    Cleary, P.W., Large scale industrial DEM modelling. Engineering Computations 21:169–204, 2004.zbMATHCrossRefGoogle Scholar
  6. 6.
    Cleary, P.W., Industrial particle flow modelling using DEM. Engineering Computations 26:698–743, 2009.CrossRefGoogle Scholar
  7. 7.
    Monaghan, J.J., Simulating free surface flows with SPH. Journal of Computational Physics 110:399–406, 1994.zbMATHCrossRefGoogle Scholar
  8. 8.
    Cleary, P.W., Prakash, M., Ha, J., Stokes, N., Scott, C., Smooth particle hydrodynamics: Status and future potential. Progress in Computational Fluid Dynamics 7:70–90, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cleary, P.W., Sinnott, M.D., Assessing mixing characteristics of particle mixing and granulation devices. Particuology 6:419–444, 2008.CrossRefGoogle Scholar
  10. 10.
    Prakash, M., Cleary, P.W., Noui-Mehidi, M.N., Blackburn, H., Brooks, G., Simulation of suspension of solids in a liquid in a mixing tank using SPH and comparison with physical modeling experiments. Progress in Computational Fluid Dynamics 7:91–100, 2007.zbMATHCrossRefGoogle Scholar
  11. 11.
    Cleary, P.W., Sinnott, M.D., Morrison, R.D., Separation performance of double deck banana screens – Part 1: Flow and separation for different accelerations. Minerals Engineering 22:1218–1229, 2009.CrossRefGoogle Scholar
  12. 12.
    Cleary, P.W., Sinnott, M.D., Morrison, R.D., Separation performance of double deck banana screens – Part 2: Quantitative predictions. Minerals Engineering 22:1230–1244, 2009.CrossRefGoogle Scholar
  13. 13.
    Cleary, P.W., Recent advances in DEM modelling of tumbling mills. Minerals Engineering 14:1295–1319, 2001.CrossRefGoogle Scholar
  14. 14.
    Cleary, P.W., Ha, J., Ahuja, V., High pressure die casting simulation using smoothed particle hydrodynamics. International Journal on Cast Metals Research 12:335–355, 2000.Google Scholar
  15. 15.
    Cleary, P.W., Ha, J., Prakash, M., Nguyen, T., 3D SPH flow predictions and validation for high pressure die casting of automotive components. Applied Mathematical Modelling 30:1406–1427, 2004.CrossRefGoogle Scholar
  16. 16.
    Cleary, P.W., Prakash, M., Ha, J., Novel applications of SPH in metal forming. Journal of Materials Processing Technology 177:41–48, 2006.CrossRefGoogle Scholar
  17. 17.
    Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K., Bubbling and frothing liquids. ACM Transaction on Graphics 26, Article No. 97, 2007.Google Scholar
  18. 18.
    Cleary, P.W., Monaghan, J.J., Conduction modelling using smoothed particle hydrodynamics. Journal of Computational Physics 148:227–264, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Cleary, P.W., Modelling confined multi-material heat and mass flows using SPH. Applied Mathematical Modelling, 22:981–993, 1998.CrossRefGoogle Scholar
  20. 20.
    Cleary, P.W., Rudman, M., Extreme wave interaction with a floating oil rig: Prediction using SPH. Proc. CFD 9:332–344, 2009.Google Scholar
  21. 21.
    Das, R., Cleary, P.W., Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics. Theoretical and Applied Fracture Mechanics 53:47–60, 2010.CrossRefGoogle Scholar
  22. 22.
    Lee, O.S., Kim, D.Y., Crack-arrest phenomenon of an aluminum alloy. Mechanics Research Communications 26:575–581, 1999.zbMATHCrossRefGoogle Scholar
  23. 23.
    Cleary, P.W., The filling of dragline buckets. Mathematical Engineering in Industry 7:1–24, 1998.zbMATHMathSciNetGoogle Scholar
  24. 24.
    Cleary, P.W., Prakash, M., Smooth particle hydrodynamics and discrete element modelling: Potential in the environmental sciences. Philosophical Transactions of the Royal Society of London A 362:2003–2030, 2004.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Cleary, P.W., Campbell, C.S., Self-lubrication for long run-out landslides: Examination by computer simulation. Journal of Geophysical Research 98(B12):21911–21924, 1993.Google Scholar
  26. 26.
    Campbell, C.S., Cleary, P.W., Hopkins, M.A., Large scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research 100(B5):8267–8283, 1995.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul W. Cleary
    • 1
  • Mahesh Prakash
    • 1
  • Matt D. Sinnott
    • 1
  • Murray Rudman
    • 1
  • Raj Das
    • 1
  1. 1.CSIRO Mathematics, Informatics and StatisticsClayton SouthAustralia

Personalised recommendations