NDT of Structural Timber Members by Means of 3D Ultrasonic Imaging Techniques and Modelling

  • M. Krause
  • P. K. Chinta
  • K. Mayer
  • U. A. Effner
  • S. Müller
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 6)

Abstract

The present paper describes the development and first application of ultrasonic imaging of timber (wood) by means of reconstruction calculation (3D-SAFT; Synthetic Aperture Focusing Technique). It considers the highly anisotropic ultrasonic velocity on wood. In order to validate such techniques we report on experiments carried out on test specimens made from pine and beech. Those specimens differ for the orientations of the annual rings. For the reconstruction calculation the slowness curves of the material are considered applying the elastic constants known from the literature. The anisotropic SAFT reconstruction is calculated from measured datasets and from synthetic data resulting from EFIT modelling (EFIT: Elastodynamic Finite Integration Technique).

Keywords

Modelling Reconstruction calculation Timber Ultrasonic imaging• Wood 

Notes

Acknowledgements

This research work is funded by the Federal Office for Building and Regional Planning (BBR, Germany).

The authors would like to acknowledge Prof. Karl-Jörg Langenberg and Priv.-Doz. Dr.-Ing. Rene Marklein for their support. The test specimens were made by Mr. M. Lange (BAM VIII.2) and Mr. D. Rätsch BAM IV.1).

References

  1. [1]
    Hasenstab, A., Hillemeier, B., Krause, M. [2005]: Defect Localization in Wood with Low Frequency Ultrasonic Echo Technique. In: Proceedings of the 14th International Symposium on NDT of Wood, 02.-04.05.05, Hannover.Google Scholar
  2. [2]
    Mayer, K., Marklein, R., Langenberg, K.J., Kreutter, T. [1990]: Three-dimensional imaging system based on Fourier transform synthetic aperture focusing technique. Ultrasonics V 28, pp. 241–255.CrossRefGoogle Scholar
  3. [3]
    Marklein, R. [1997]: Numerische Verfahren zur Modellierung von akustischen, elektromagnetischen, elastischen und piezoelektrischen Wellenausbreitungsproblem im Zeitbereich basierend auf der Finiten Integrationstechnik. Shaker Verlag, Aachen, Germany.Google Scholar
  4. [4]
    Chinta, P., Mayer, K., Krause M. [2010]: Ultraschallmodellierung und SAFT-Rekonstruktion von Fehlstellen in Holzbauteilen. In: Berichtsband der DGZfP-Jahrestagung 2010, Erfurt, 10.-12. Mai 2010, BB 122-CD, Poster 59, 8 pages.Google Scholar
  5. [5]
    Musgrave, M.J.P. [1970]: Crystal Acoustics, Introduction to the study of elastic waves and vibrations in crystals. Holden-Day, San Fancisco, USA.MATHGoogle Scholar
  6. [6]
    Bucur, V. [2006]: Acoustics of Wood. 2nd Edition, Springer-Verlag, Berlin Heidelberg, Germany.Google Scholar
  7. [7]
    Schubert, S. [2007]: Acousto-Ultrasound Assessment of Inner Wood-Decay in Standing Trees: Possibilities and Limitations. Swiss Federal Institute of Technology, Zurich, Dissertation ETH Nr. 17126, 125 pages.Google Scholar
  8. [8]
    Bucur, V., Lanceleur, P., Roge, B. [2002]: Acoustic properties of wood in tridimensional representation of slowness surfaces. Ultrasonics 40, pp. 537–541.CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • M. Krause
    • 1
  • P. K. Chinta
    • 2
  • K. Mayer
    • 2
  • U. A. Effner
    • 1
  • S. Müller
    • 1
  1. 1.BAM Bundesanstalt für Materialforschung und -prüfungBerlinGermany
  2. 2.University of KasselKasselGermany

Personalised recommendations