Monitoring of Salt Content in Mineral Materials Using Wireless Sensor Networks

  • J. Frick
  • F. Lehmann
  • K. Menzel
  • H. Pakdel
  • M. Krüger
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 6)


The recrystallization of salts due to changes in moisture content is one of the major damage mechanisms in historic materials like natural stones, bricks, plasters, and mortars. This paper presents a new development in the field of wireless monitoring the salt content in historic mineral materials. In this investigation ion selective potential sensors (electrodes) are used for monitoring salt displacement in time, influenced by changes in moisture content. Different kind of electrodes and electrode couplings are tested in laboratory, and in field measurements. For measuring the potential, low power data acquisition hardware was developed that is optimized for using it in wireless sensor networks. Data acquisition uses a competitive wireless sensor network system that is further developed in the SMooHS-Project (Smart Monitoring of Historic Structures, Collaborative Project in the 7th Framework Programme of the EU) to operate under harsh environments. First results of the laboratory and field test are presented, showing that long-term monitoring of salt content is feasible.


Ion selective electrodes Material moisture Mineral materials Salts Wireless monitoring Desalination 



 This work was supported by the European Commission under the grant Agreement no. 212939 (Project: Smart monitoring of historic structures – SMooHS, homepage: within the FP7 programme and by the German “Forschungsintitiative Zukunft Bau” of BBSR (Aktenzeichen: SF – 08.35 / II 3 – F20-08-37).


  1. [1].
    Angst, A.; Elsener, B.; Larsen, C.K.; Vennesland Ø. (2010) J. Appl. Electrochem., vol. 40, pp. 561–573.CrossRefGoogle Scholar
  2. [2].
    Elsener, B.; Zimmermann, L.; Böhni, H. (2003) Mater. Corros., vol. 54, pp. 440–446.CrossRefGoogle Scholar
  3. [3].
    Grosse, C.U.; Pascale, G.; Simon, S.; Krüger, M.; Troi, A.; Colla, C.; Rajčić, V; Lukomski, M. (2008) In: Proceedings of In situ Monitoring of Monumental Surfaces – SMW08, Florence 27th – 29th October 2008.Google Scholar
  4. [4].
    Krüger, M.; Grosse, C.U.; Bachmaier, S.A.; Willeke, J. (2010) In: Proceedings of the International Workshop on Preservation of Heritage Structures Using ACM and SHM. Proceedings of CSHM-3, Canada, Ottawa-Gatineau.Google Scholar
  5. [5].
    Handbook of chemistry and physics (2010–2011) 91st edn., CRC Press, Boca Raton, online version.Google Scholar
  6. [6].
    Shreir, L.L.; Jarman, R.A.; Burstein, G.T. (1994) Corrosion, vol. 2, 3rd edn. Butterworth Heinemann, Oxford.Google Scholar
  7. [7].
    Grimm, W.-D. (1990) Bildatlas wichtiger Denkmalgesteine der Bundesrepublik Deutschland, Arbeitshefte vol. 50, Bayerisches Landesamt für Denkmalpflege.Google Scholar
  8. [8].
    Szilagyi, J. (1995) Untersuchung petrophysikalischer Eigenschaften an Leitgesteinen der Denkmalpflege, report within BMFT-project 7025B: Verbesserung von Methoden zur Diagnose und Therapie von Tragstabilitätsschäden/schwächen kritischer Mauerwerks-Partien an Baudenkmälern, (research contract Z/A-78, 1-10-1991) Technical University of Dresden – Professorship Applied Geology.Google Scholar
  9. [9].
    Steiger, M. (2005) Restoration of Buildings and Monuments – Bauinstand-setzung und Denkmalpflege, vol. 11, no. 6, pp. 419–432.Google Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • J. Frick
    • 1
  • F. Lehmann
    • 1
  • K. Menzel
    • 1
  • H. Pakdel
    • 1
  • M. Krüger
    • 1
  1. 1.Materialprüfungsanstalt Universität StuttgartStuttgartGermany

Personalised recommendations