Skip to main content

Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

The purpose of this chapter is to describe and review examples of how theoretical investigations can be applied to elucidate the behavior of carbon nanostructures and to understand the physical mechanisms taking place at the molecular level. We will place a special emphasis in theoretical works utilizing density functional theory. We assume that the reader is familiar with the basics of density functional theory as well as the electronic properties of single-walled carbon nanotubes and graphene nanoribbons (GNRs). We do not intend to present an extensive review; instead, we focus on several examples to illustrate the powerful predictive capabilities of current computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110, 6158–6170.

    CAS  Google Scholar 

  • Adamson, R., Dombroski, J., & Gill, P. (1996). Chemistry without Coulomb tails. Chemical Physics Letters, 254, 329–336.

    CAS  Google Scholar 

  • Adamson, R., Dombroski, J., & Gill, P. (1999). Efficient calculation of short-range Coulomb energies. Journal of Computational Chemistry, 20, 921–927.

    CAS  Google Scholar 

  • Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., & Weisman, R. B. (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298, 2361–2366.

    CAS  Google Scholar 

  • Balaban, A. T., & Klein, D. J. (2009). Claromatic carbon nanostructures. Journal of Physical Chemistry C, 113, 19123–19133.

    CAS  Google Scholar 

  • Baldoni, M., Sgamellotti, A., & Mercuri, F. (2007). Finite-length models of carbon nanotubes based on clar sextet theory. Organic Letters, 9, 4267–4270.

    CAS  Google Scholar 

  • Baldoni, M., Sgamellotti, A., & Mercuri, F. (2008). Electronic properties and stability of graphene nanoribbons: An interpretation based on Clar sextet theory. Chemical Physics Letters, 464, 202–207.

    CAS  Google Scholar 

  • Barone, V., & Scuseria, G. E. (2004). Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: Beyond the local density approximation. The Journal of Chemical Physics, 121, 10376–10379.

    CAS  Google Scholar 

  • Barone, V., Peralta, J. E., & Scuseria, G. E. (2005a). Optical transitions in metallic single-walled carbon nanotubes. Nano Letters, 5, 1830–1833.

    CAS  Google Scholar 

  • Barone, V., Peralta, J. E., Wert, M., Heyd, J., & Scuseria, G. E. (2005b). Density functional theory study of optical transitions in semiconducting single-walled carbon nanotubes. Nano Letters, 5, 1621–1624.

    CAS  Google Scholar 

  • Barone, V., Hod, O., & Scuseria, G. E. (2006). Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6, 2748–2754.

    CAS  Google Scholar 

  • Batista, E. R., Heyd, J., Hennig, R. G., Uberuaga, B. P., Martin, R. L., Scuseria, G. E., Umrigar, C. J., & Wilkins, J. W. (2006). Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects. Physical Review B, 74, 121102.

    Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652.

    CAS  Google Scholar 

  • Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., & de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191.

    CAS  Google Scholar 

  • Bhardwaj, T., Antic, A., Pavan, B., Barone, V., & Fahlman, B. D. (2010). Enhanced electrochemical lithium storage by graphene nanoribbons. Journal of the American Chemical Society, 132, 12556–12559.

    CAS  Google Scholar 

  • Blase, X., Benedict, L. X., Shirley, E. L., & Louie, S. G. (1994). Hybridization effects and metallicity in small radius carbon nanotubes. Physical Review Letters, 72, 1878–1881.

    CAS  Google Scholar 

  • Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V., & Scuseria, G. E. (2008). Accurate solid-state band gaps via screened hybrid electronic structure calculations. The Journal of Chemical Physics, 129, 011102.

    Google Scholar 

  • Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from graphene sheets. Science, 315, 490–493.

    CAS  Google Scholar 

  • Cabria, I., Mintmire, J. W., & White, C. T. (2003). Metallic and semiconducting narrow carbon nanotubes. Physical Review B, 67, 121406.

    Google Scholar 

  • Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A. P., Saleh, M., Feng, X., Müllen, K., & Faseel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466, 470–473.

    CAS  Google Scholar 

  • Cao, J., Wang, Q., & Dai, H. (2003). Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical Review Letters, 90, 157601.

    Google Scholar 

  • Cervantes-Sodi, F., Csányi, G., Piscanec, S., & Ferrari, A. C. (2008a). Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Physical Review B, 77, 165427.

    Google Scholar 

  • Cervantes-Sodi, F., Csányi, G., Piscanec, S., & Ferrari, A. C. (2008b). Electronic properties of chemically modified graphene ribbons. Physica Status Solidi B, 245, 2068–2071.

    CAS  Google Scholar 

  • Chen, Z., Kobashi, K., Rauwald, U., Booker, R., Fan, H., Hwang, W.-F., & Tour, J. M. (2006a). Soluble ultra-short single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 10568–10571.

    CAS  Google Scholar 

  • Chen, Z., Ziegler, K., Shaver, J., Hauge, R., & Smalley, R. (2006b). Cutting of single-walled carbon nanotubes by ozonolysis. Journal of Physical Chemistry B, 110, 11624–11627.

    CAS  Google Scholar 

  • Chen, Z., Lin, Y.-M., Rooks, M. J., & Avouris, P. (2007). Graphene nano-ribbon electronics. Physica E, 40, 228–232.

    CAS  Google Scholar 

  • Choi, S.-M., & Jhi, S.-H. (2008). Self-assembled metal atom chains on graphene nanoribbons. Physical Review Letters, 101, 266105.

    Google Scholar 

  • Cohen-Karni, T., Segev, L., Srur-Lavi, O., Cohen, S. R., & Joselevich, E. (2006). Torsional electromechanical quantum oscillations in carbon nanotubes. Nature Nanotechnology, 1, 36–41.

    CAS  Google Scholar 

  • Deslippe, J., Spataru, C. D., Prendergast, D., & Louie, S. G. (2007). Bound excitons in metallic single-walled carbon nanotubes. Nano Letters, 7, 1626–1630.

    CAS  Google Scholar 

  • Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the perdewburkeernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110, 5029–5036.

    CAS  Google Scholar 

  • Ezawa, M. (2006). Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B, 73, 045432.

    Google Scholar 

  • Ezawa, M. (2007). Metallic graphene nanodisks: Electronic and magnetic properties. Physical Review B, 76, 245415.

    Google Scholar 

  • Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., & Mombru, A. W. (2009). Mechanical properties of graphene nanoribbons. Journal of Physics Condensed Matter, 21, 285304.

    Google Scholar 

  • Fantini, C., Jorio, A., Souza, M., Strano, M. S., Dresselhaus, M. S., & Pimenta, M. A. (2004). Optical transition energies for carbon nanotubes from resonant raman spectroscopy: Environment and temperature effects. Physical Review Letters, 93, 147406.

    CAS  Google Scholar 

  • Feller, D. (1996). The role of databases in support of computational chemistry calculations. Journal of Computational Chemistry, 17, 1571–1586.

    CAS  Google Scholar 

  • Feller, D. (2007). Basis set exchange: v1.2.2. https://bse.pnl.gov/bse/portal.

  • Fennimore, A., Yuzvinsky, T., Han, W., Fuhrer, M., Cumings, J., & Zettl, A. (2003). Rotational actuators based on carbon nanotubes. Nature, 424, 408–410.

    CAS  Google Scholar 

  • Fernandez-Rossier, J., & Palacios, J. J. (2007). Magnetism in graphene nanoislands. Physical Review Letters, 99, 177204.

    CAS  Google Scholar 

  • Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25, 2558–2561.

    CAS  Google Scholar 

  • Frey, J. T., & Doren, D. J. (2005). TubeGen Online - Version 3.3 - Web-Accessible nanotube structure generator. http://turin.nss.udel.edu/research/tubegenonline.html.

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2006). GAUSSIAN development version, revision f.02. Wallingford CT: Gaussian Inc. 2009.

    Google Scholar 

  • Fujita, M., Wakabayashi, K., Nakada, K., & Kusakabe, K. (1996). Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65, 1920–1923.

    CAS  Google Scholar 

  • Gomez-Navarro, C., de Pablo, P., & Gomez-Herrero, J. (2004). Radial electromechanical properties of carbon nanotubes. Advanced Materials, 16, 549.

    CAS  Google Scholar 

  • Gruneich, A., & Hess, B. (1998). Choosing GTO basis sets for periodic HF calculations. Theoretical Chemistry Accounts, 100, 253–263.

    Google Scholar 

  • Gu, Z., Peng, H., Hauge, R., Smalley, R., & Margrave, J. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Letters, 2, 1009–1013.

    CAS  Google Scholar 

  • Gülseren, O., Yildirim, T., & Ciraci, S. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. Physical Review B, 65, 153405.

    Google Scholar 

  • Gunlycke, D., Li, J., Mintmire, J., & White, C. (2007). Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Applied Physics Letters, 91, 112108.

    Google Scholar 

  • Guo, G., Liu, L., Chu, K., Jayanthi, C., & Wu, S. (2005). Electromechanical responses of single-walled carbon nanotubes: Interplay between the strain-induced energy-gap opening and the pinning of the Fermi level. Journal of Applied Physics Letters, 98, 044311.

    Google Scholar 

  • Hall, A. R., Falvo, M. R., Superfine, R., & Washburn, S. (2007). Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device. Nature Nanotechnology, 2, 413–416.

    CAS  Google Scholar 

  • Hamada, N., Sawada, S., & Oshiyama, A. (1992). New one-dimensional conductors – Graphitic microtubules. Physical Review Letters, 68, 1579.

    CAS  Google Scholar 

  • Han, M. Y., Oezyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98, 206805.

    Google Scholar 

  • Heyd, J., & Scuseria, G. E. (2004). Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics, 121, 1187–1192.

    CAS  Google Scholar 

  • Heyd, R., Charlier, A., & McRae, E. (1997). Uniaxial-stress effects on the electronic properties of carbon nanotubes. Physical Review B, 55(11), 6820–6824.

    CAS  Google Scholar 

  • Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 118, 8207–8215.

    CAS  Google Scholar 

  • Heyd, J., Peralta, J., Scuseria, G., & Martin, R. (2005). Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123, 174101.

    Google Scholar 

  • Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2006). Erratum: Hybrid functionals based on a screened Coulomb potential [The Journal of Chemical Physics, 118, 8207 (2003)]. The Journal of Chemical Physics, 124, 219906.

    Google Scholar 

  • Higuchi, Y., Kusakabe, K., Suzuki, N., Tsuneyuki, S., Yamauchi, J., Akagi, K., & Yoshimoto, Y. (2004). Nanotube-based molecular magnets with spin-polarized edge states. Journal of Physics Condensed Matter, 16, S5689–S5692.

    CAS  Google Scholar 

  • Hod, O., & Scuseria, G. E. (2008). Half-metallic-zigzag carbon nanotube dots. ACS Nano, 2, 2243–2249.

    CAS  Google Scholar 

  • Hod, O., & Scuseria, G. E. (2009). Electromechanical properties of suspended graphene nanoribbons. Nano Letters, 9, 2619–2622.

    CAS  Google Scholar 

  • Hod, O., Peralta, J. E., & Scuseria, G. E. (2006). First-principles electronic transport calculations in finite elongated systems: A divide and conquer approach. The Journal of Chemical Physics, 125, 114704.

    Google Scholar 

  • Hod, O., Barone, V., Peralta, J. E., & Scuseria, G. E. (2007a). Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Letters, 7, 2295–2299.

    CAS  Google Scholar 

  • Hod, O., Peralta, J. E., & Scuseria, G. E. (2007b). Edge effects in finite elongated graphene nanoribbons. Physical Review B, 76, 233401.

    Google Scholar 

  • Hod, O., Barone, V., & Scuseria, G. E. (2008). Half-metallic graphene nanodots: A comprehensive first-principles theoretical study. Physical Review B, 77, 035411.

    Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 58–56.

    Google Scholar 

  • Javey, A., Qi, P., Wang, Q., & Dai, H. (2004). Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proceedings of the National Academy of Sciences of the United States of America, 101, 13408–13410.

    CAS  Google Scholar 

  • Jiang, H., Bu, W., Jiang, J., & Dong, J. (2004). Electronic structure in finite-length deformed metallic carbon nanotubes. The European Physical Journal B, 42, 503–508.

    CAS  Google Scholar 

  • Jiang, D. E., Sumpter, B. G., & Dai, S. (2007). First principles study of magnetism in nanographenes. The Journal of Chemical Physics, 127, 124703.

    Google Scholar 

  • Kan, E. J., Li, Z., Yang, J., & Hou, J. G. (2007). Will zigzag graphene nanoribbon turn to half metal under electric field? Applied Physics Letters, 91, 243116.

    Google Scholar 

  • Kane, C. L., & Mele, E. J. (1997). Size, shape, and low energy electronic structure of carbon nanotubes. Physical Review Letters, 78(10), 1932–1935.

    CAS  Google Scholar 

  • Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103, 2555–2558.

    CAS  Google Scholar 

  • Khabashesku, V., Billups, W., & Margrave, J. (2002). Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Accounts of Chemical Research, 35, 1087–1095.

    CAS  Google Scholar 

  • Kim, Y., Choi, J., Chang, K., & Tomanek, D. (2003). Defective fullerenes and nanotubes as molecular magnets: An ab initio study. Physical Review B, 68, 125420.

    Google Scholar 

  • Klein, D. (1994). Graphitic polymer strips with edge states. Chemical Physics Letters, 217, 261–265.

    Google Scholar 

  • Kleiner, A., & Eggert, S. (2001). Band gaps of primary metallic carbon nanotubes. Physical Review B, 63(7), 073408.

    Google Scholar 

  • Kobayashi, K. (1993). Electronic-structure of a stepped graphite surface. Physical Review B, 48, 1757–1760.

    CAS  Google Scholar 

  • Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K., & Kaburagi, Y. (2005). Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Physical Review B, 71, 193406.

    Google Scholar 

  • Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K., & Kaburagi, Y. (2006). Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Physical Review B, 73, 125415.

    Google Scholar 

  • Krepel, D., & Hod, O. (2011). Lithium adsorption on armchair graphene nanoribbons. Surface Science, 605, 1633–1642.

    CAS  Google Scholar 

  • Kroto, H., Heath, J., Obrien, S., Curl, R., & Smalley, R. (1985). C-60 – Buckminsterfullerene. Nature, 318(6042), 162–163.

    CAS  Google Scholar 

  • Kudin, K. N. (2008). Zigzag graphene nanoribbons with saturated edges. ACS Nano, 2, 516–522.

    CAS  Google Scholar 

  • Kümmel, S., & Kronik, L. (2008). Orbital-dependent density functionals: Theory and applications. Reviews of Modern Physics, 80, 3–60.

    Google Scholar 

  • Kusakabe, K., & Maruyama, M. (2003). Magnetic nanographite. Physical Review B, 67, 092406.

    Google Scholar 

  • Lammert, P. E., Zhang, P., & Crespi, V. H. (2000). Gapping by squashing: Metal-insulator and insulator-metal transitions in collapsed carbon nanotubes. Physical Review Letters, 84(11), 2453–2456.

    CAS  Google Scholar 

  • Lee, G., & Cho, K. (2009). Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Physical Review B, 79, 165440.

    Google Scholar 

  • Li, Z., Tang, Z., Liu, H., Wang, N., Chan, C., Saito, R., Okada, S., Li, G., Chen, J., Nagasawa, N., & Tsuda, S. (2001). Polarized absorption spectra of single-walled 4 angstrom carbon nanotubes aligned in channels of an AlPO4 − 5 single crystal. Physical Review Letters, 87, 127401.

    CAS  Google Scholar 

  • Li, J., Zhang, Y., & Zhang, M. (2002). The electronic structure and its theoretical simulation of carbon nanotube with finited length. Part I: The frontier orbitals and its properties of short armchair nanotubes. Chemical Physics Letters, 364, 328–337.

    CAS  Google Scholar 

  • Lieb, E. (1989). 2 theorems on the Hubbard-model. Physical Review Letters, 62, 1201–1204.

    Google Scholar 

  • Liu, H. J., & Chan, C. T. (2002). Properties of 4 angstrom carbon nanotubes from first-principles calculations. Physical Review B, 66, 115416.

    Google Scholar 

  • Liu, L., Jayanthi, C. S., Tang, M., Wu, S. Y., Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., & Dai, H. (2000). Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an afm tip: A nanoscale electromechanical switch? Physical Review Letters, 84(21), 4950–4953.

    CAS  Google Scholar 

  • Liu, L., Jayanthi, C., Guo, H., & Wu, S. (2001). Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes. Physical Review B, 64, 033414.

    Google Scholar 

  • Lu, J.-Q., Wu, J., Duan, W., Liu, F., Zhu, B.-F., & Gu, B.-L. (2003). Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Physical Review Letters, 90(15), 156601.

    Google Scholar 

  • Machón, M., Reich, S., Thomsen, C., Sánchez-Portal, D., & Ordejón, P. (2002). Ab initio calculations of the optical properties of 4-angstrom-diameter single-walled nanotubes. Physical Review B, 66, 155410.

    Google Scholar 

  • Maiti, A. (2001). Application of carbon nanotubes as electromechanical sensors – Results from first-principles simulations. Physica Status Solidi, 226, 87–93.

    CAS  Google Scholar 

  • Maiti, A. (2003). Carbon nanotubes – Bandgap engineering with strain. Nature Materials, 2, 440–442.

    CAS  Google Scholar 

  • Maiti, A. (2009). Integrated analytical systems, computational methods for sensor material selection. New York: Springer.

    Google Scholar 

  • Maiti, A., Svizhenko, A., & Anantram, M. (2002). Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Physical Review Letters, 88, 126805.

    Google Scholar 

  • Mananes, A., Duque, F., Ayuela, A., Lopez, M. J., & Alonso, J. A. (2008). Half-metallic finite zigzag single-walled carbon nanotubes from first principles. Physical Review B, 78, 035432.

    Google Scholar 

  • Mehrez, H., Svizhenko, A., Anantram, M., Elstner, M., & Frauenheim, T. (2005). Analysis of band-gap formation in squashed armchair carbon nanotubes. Physical Review B, 71, 155421.

    Google Scholar 

  • Mickelson, E., Huffman, C., Rinzler, A., Smalley, R., Hauge, R., & Margrave, J. (1998). Fluorination of single-wall carbon nanotubes. Chemical Physics Letters, 296, 188–194.

    CAS  Google Scholar 

  • Milaninia, K. M., Baldo, M. A., Reina, A., & Kong, J. (2009). All graphene electromechanical switch fabricated by chemical vapor deposition. Applied Physics Letters, 95, 183105.

    Google Scholar 

  • Minot, E., Yaish, Y., Sazonova, V., Park, J., Brink, M., & McEuen, P. (2003). Tuning carbon nanotube band gaps with strain. Physical Review Letters, 90, 156401.

    CAS  Google Scholar 

  • Mintmire, J., Dunlap, B., & White, C. (1992). Are fullerene tubules metallic? Physical Review Letters, 68, 631.

    CAS  Google Scholar 

  • Nagapriya, K. S., Berber, S., Cohen-Karni, T., Segev, L., Srur-Lavi, O., Tomanek, D., & Joselevich, E. (2008). Origin of torsion-induced conductance oscillations in carbon nanotubes. Physical Review B, 78, 165417.

    Google Scholar 

  • Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54, 17954–17961.

    CAS  Google Scholar 

  • Nakamura, E., Tahara, K., Matsuo, Y., & Sawamura, M. (2003). Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. Journal of the American Chemical Society, 125, 2834–2835.

    CAS  Google Scholar 

  • Nardelli, M. B. (1999). Electronic transport in extended systems: Application to carbon nanotubes. Physical Review B, 60(11), 7828–7833.

    CAS  Google Scholar 

  • Nardelli, M. B., & Bernholc, J. (1999). Mechanical deformations and coherent transport in carbon nanotubes. Physical Review B, 60(24), R16338–R16341.

    CAS  Google Scholar 

  • Niimi, Y., Matsui, T., Kambara, H., Tagami, K., Tsukada, M., & Fukuyama, H. (2005). Scanning tunneling microscopy and spectroscopy studies of graphite edges. Applied Surface Science, 241, 43–48.

    CAS  Google Scholar 

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.

    CAS  Google Scholar 

  • Okada, S., & Oshiyama, A. (2003). Nanometer-scale ferromagnet: Carbon nanotubes with finite length. Journal of the Physical Society of Japan, 72, 1510–1515.

    CAS  Google Scholar 

  • Onida, G., Reining, L., & Rubio, A. (2002). Electronic excitations: Density-functional versus many-body Green’s-function approaches. Reviews of Modern Physics, 74, 601–659.

    CAS  Google Scholar 

  • Paier, J., Marsman, M., & Kresse, G. (2007). Why does the B3LYP hybrid functional fail for metals? The Journal of Chemical Physics, 127, 024103.

    Google Scholar 

  • Paulson, S., Falvo, M., Snider, N., Helser, A., Hudson, T., Seeger, A., Taylor, R., Superfine, R., & Washburn, S. (1999). In situ resistance measurements of strained carbon nanotubes. Applied Physics Letters, 75, 2936–2938.

    CAS  Google Scholar 

  • Peng, S., & Cho, K. (2002). Nano electro mechanics of semiconducting carbon nanotube. Journal of Applied Mechanics, 69, 451.

    CAS  Google Scholar 

  • Peralta, J. E., Heyd, J., Scuseria, G. E., & Martin, R. L. (2006). Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. Physical Review B, 74, 073101.

    Google Scholar 

  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.

    CAS  Google Scholar 

  • Perdew, J. P., Ernzerhof, M., & Burke, K. (1997). Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105, 9982–9985.

    Google Scholar 

  • Pimenta, M., Gomes, A., Fantini, C., Cancado, L., Araujo, P., Maciel, I., Santos, A., Furtado, C., Peressinotto, V., Plentz, F., & Jorio, A. (2007). Optical studies of carbon nanotubes and nanographites. Physica E, 37, 88–92.

    CAS  Google Scholar 

  • Poot, M. & van der Zant, H. S. J. (2008). Nanomechanical properties of few-layer graphene membranes. Applied Physics Letters, 92, 063111.

    Google Scholar 

  • Prezzi, D., Varsano, D., Ruini, A., Marini, A., & Molinari, E. (2008). Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review B, 77, 041477.

    Google Scholar 

  • Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 127, 5917–5927.

    CAS  Google Scholar 

  • Reich, S., Thomsen, C., & Ordejón, P. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. Physical Review B, 65, 153405.

    Google Scholar 

  • Rigo, V. A., Martins, T. B., da Silva, A. J. R., Fazzio, A., & Miwa, R. H. (2009). Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B, 79, 075435.

    Google Scholar 

  • Ritter, K. A., & Lyding, J. W. (2009). The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials, 8, 235–242.

    CAS  Google Scholar 

  • Rochefort, A., Salahub, D. R., & Avouris, P. (1998). The effect of structural distortions on the electronic structure of carbon nanotubes. Chemical Physics Letters, 297, 45–50.

    CAS  Google Scholar 

  • Rochefort, A., Avouris, P., Lesage, F., & Salahub, D. R. (1999a). Electrical and mechanical properties of distorted carbon nanotubes. Physical Review B, 60(19), 13824–13830.

    CAS  Google Scholar 

  • Rochefort, A., Salahub, D., & Avouris, P. (1999b). Effects of finite length on the electronic structure of carbon nanotubes. Journal of Physical Chemistry B, 103, 641–646.

    CAS  Google Scholar 

  • Rudberg, E., Salek, P., & Luo, Y. (2007). Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Letters, 7, 2211–2213.

    CAS  Google Scholar 

  • Rueckes, T., Kim, K., Joselevich, E., Tseng, G., Cheung, C., & Lieber, C. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289, 94–97.

    CAS  Google Scholar 

  • Runge, E., & Gross, E. (1984). Density-functional theory for time-dependent systems. Physical Review Letters, 52, 997–1000.

    CAS  Google Scholar 

  • Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. (1992). Electronic structure of graphene tubules based on C60. Physical Review B, 46, 1804–1811.

    CAS  Google Scholar 

  • Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1998). Physical properties of carbon nanotubes. London: Imperial College Press.

    Google Scholar 

  • Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T., & McEuen, P. (2004). A tunable carbon nanotube electromechanical oscillator. Nature, 431, 284–287.

    CAS  Google Scholar 

  • Semet, V., Binh, V., Guillot, D., Teo, K., Chhowalla, M., Amaratunga, G., Milne, W., Legagneux, P., & Pribat, D. (2005). Reversible electromechanical characteristics of individual multiwall carbon nanotubes. Applied Physics Letters, 87, 223103.

    Google Scholar 

  • Sevincli, H., Topsakal, M., Durgun, E., & Ciraci, S. (2008). Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Physical Review B, 77, 195434.

    Google Scholar 

  • Sfeir, M. Y., Beetz, T., Wang, F., Huang, L. M., Huang, X. M. H., Huang, M. Y., Hone, J., O’Brien, S., Misewich, J. A., Heinz, T. F., Wu, L. J., Zhu, Y. M., & Brus, L. E. (2006). Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science, 312, 554–556.

    CAS  Google Scholar 

  • Shaver, J., Kono, J., Portugall, O., Krstic, V., Rikken, G. L. J. A., Miyauchi, Y., Maruyama, S., & Perebeinos, V. (2007). Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. Nano Letters, 7, 1851–1855.

    CAS  Google Scholar 

  • Shemella, P., Zhang, Y., Mailman, M., Ajayan, P. M., & Nayak, S. K. (2007). Energy gaps in zero-dimensional graphene nanoribbons. Applied Physics Letters, 91, 042101.

    Google Scholar 

  • Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006a). Energy gaps in graphene nanoribbons. Physical Review Letters, 97, 216803.

    Google Scholar 

  • Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006b). Half-metallic graphene nanoribbons. Nature, 444, 347–349.

    CAS  Google Scholar 

  • Spataru, C. D., Ismael-Beigi, S., Benedict, L. X., & Louie, S. G. (2004). Excitonic effects and optical spectra of single-walled carbon nanotubes. Physical Review Letters, 92, 077402.

    Google Scholar 

  • Spataru, C. D., Ismael-Beigi, S., Capaz, R. B., & Louie, S. G. (2008). Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. Topics in Applied Physics, 111, 195–227.

    CAS  Google Scholar 

  • Springborg, M., & Satpathy, S. (1994). Density-functional calculations of electronic and structural properties of small fullerene tubules. Chemical Physics Letters, 255, 454–461.

    Google Scholar 

  • Stampfer, C., Jungen, A., Linderman, R., Obergfell, D., Roth, S., & Hierold, C. (2006). Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Letters, 6, 1449–1453.

    CAS  Google Scholar 

  • Stein, S., & Brown, R. (1987). Pi-electron properties of large condensed polyaromatic hydrocarbons. Journal of the American Chemical Society, 109, 3721–3729.

    CAS  Google Scholar 

  • Sun, L., Li, Q., Ren, H., Su, H., Shi, Q. W., & Yang, J. (2008). Strain effect on electronic structures of graphene nanoribbons: A first-principles study. Journal of Chemical Physics, 129, 074704.

    Google Scholar 

  • Svizhenko, A., Mehrez, H., Anantram, A. M. P., & Maiti, A. (2005). Sensing mechanical deformation in carbon nanotubes by electrical response: a computational study. Proceedings of SPIE, 5593, 416–428.

    Google Scholar 

  • Tanaka, K., Yamashita, S., Yamabe, H., & Yamabe, T. (1987). Electronic-properties of one-dimensional graphite family. Synthetic Metals, 17, 143–148.

    CAS  Google Scholar 

  • Tang, Z. K., Sun, H. D., Wang, J., Chen, J., & Li, G. (1998). Mono-sized single-wall carbon nanotubes formed in channels of AlPO4 − 5 single crystal. Applied Physics Letters, 73, 2287–2289.

    CAS  Google Scholar 

  • Tao, J., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91, 146401.

    Google Scholar 

  • Telg, H., Maultzsch, J., Reich, S., Hennrich, F., & Thompsen, C. (2004). Chirality distribution and transition energies of carbon nanotubes. Physical Review Letters, 93, 177401.

    CAS  Google Scholar 

  • Tombler, T., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Lei, L., Jayanthi, C., Tang, M., & Wu, S. (2000). Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 405, 769–772.

    CAS  Google Scholar 

  • Tsukada, M., Adachi, H., & Satoko, C. (1983). Theory of electronic-structure of oxide surfaces. Progress in Surface Science, 14, 113–173.

    CAS  Google Scholar 

  • Uthaisar, C., & Barone, V. (2010). Edge effects on the characteristics of li diffusion in graphene. Nano Letters, 10, 2838–2842.

    CAS  Google Scholar 

  • Uthaisar, C., Barone, V., & Peralta, J. E. (2009). Lithium adsorption on zigzag graphene nanoribbons. Journal of Applied Physics, 106, 113715.

    Google Scholar 

  • Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892–7895.

    Google Scholar 

  • Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin-density calculations – A critical analysis. Canadian Journal of Physics, 58, 1200–1211.

    CAS  Google Scholar 

  • Wakabayashi, K., Fujita, M., Ajiki, H., & Sigrist, M. (1999). Electronic and magnetic properties of nanographite ribbons. Physical Review B, 59, 8271–8282.

    CAS  Google Scholar 

  • Wang, F., Dukovic, G., Brus, L. E., & Heinz, T. F. (2005). The optical resonances in carbon nanotubes arise from excitons. Science, 308, 838–841.

    CAS  Google Scholar 

  • Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., & Dai, H. (2008). Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 100, 206803.

    Google Scholar 

  • Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M., & Mauri, F. (2008). Structure, stability, edge states, and aromaticity of graphene ribbons. Physical Review Letters, 101, 096402.

    Google Scholar 

  • Weisman, R. B., & Bachilo, S. M. (2003). Nano Letters, 3, 1235–1238.

    CAS  Google Scholar 

  • Wu, J., Zang, J., Larade, B., Guo, H., Gong, X., & Liu, F. (2004). Computational design of carbon nanotube electromechanical pressure sensors. Physical Review B, 69, 153406.

    Google Scholar 

  • Yang, L., & Han, J. (2000). Electronic structure of deformed carbon nanotubes. Physical Review Letters, 85(1), 154–157.

    CAS  Google Scholar 

  • Yang, L., Anantram, M. P., Han, J., & Lu, J. P. (1999). Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Physical Review B, 60(19), 13874–13878.

    CAS  Google Scholar 

  • Yang, L., Cohen, M. L., & Louie, S. G. (2007). Excitonic effects in the optical spectra of graphene nanoribbons. Nano Letters, 10, 3112–3115.

    Google Scholar 

  • Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader, H. J., & Müllen, K. (2008). Two-dimensional graphene nanoribbons. Journal of the American Chemical Society, 130, 4216.

    CAS  Google Scholar 

  • Zhang, D.-B., James, R. D., & Dumitrica, T. (2009). Electromechanical characterization of carbon nanotubes in torsion via symmetry adapted tight-binding objective molecular dynamics. Physical Review B, 80(11), 115418.

    Google Scholar 

  • Zhao, X., Liu, Y., Inoue, S., Suzuki, T., Jones, R. O., & Ando, Y. (2004). Smallest carbon nanotube Is 3 angstrom in diameter. Physical Review Letters, 92, 125502.

    CAS  Google Scholar 

  • Zheng, H., & Duley, W. (2008). First-principles study of edge chemical modifications in graphene nanodots. Physical Review B, 78, 045421.

    Google Scholar 

Download references

Acknowledgments

VB acknowledges the donors of The American Chemical Society Petroleum Research Fund for support through the award ACS PRF#49427-UNI6. OH acknowledges the support of the Israel Science Foundation (Grant 1313/08), the Center for Nanoscience and Nanotechnology at Tel-Aviv University, the Lise Meitner-Minerva Center for Computational Quantum Chemistry, and the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement no. 249225. JEP acknowledges support from NSF DMR Award #DMR-0906617.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Barone, V., Hod, O., Peralta, J.E. (2012). Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_24

Download citation

Publish with us

Policies and ethics