Skip to main content

CMOS Front-End Architecture for In-vivo Biomedical Subcutaneous Detection Devices

  • Chapter
  • First Online:
  • 909 Accesses

Abstract

This chapter describes the design and conception of the Self-Powered CMOS Front-End Architecture for a Biomedical Subcutaneous Device. The entire architecture is presented in detail as well as the powering and communication through the inductive link. The power and communication antenna and the connections between the MHCP IC (Chapter 2), the BioChip IC (Chapter 3) and the sensor are also detailed afterwards. The results obtained with the final capsule prototype with a size less than 4.5 cm × 2.5 cm are shown and commented in depth. Problems regarding misalignments between the internal and external antennas are studied and the SOA (Safety Operation Area) region is introduced. Finally, the prototype has been validated as a detector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Ghafar-Zadeh, M. Sawan, Toward fully integrated CMOS based capacitive sensor for lab-on-chip applications, IEEE International Workshop on Medical Measurements and Applications, MeMeA 2008, (May 2008), pp. 77–80

    Google Scholar 

  2. D. Barretino, Design considerations and recent advances in CMOS-based microsystems for point-of-care clinical diagnostics, in Proceedings of the IEEE International Symposium on Circuits and Systems, (2006), pp. 4362–4365

    Google Scholar 

  3. Cygnus Inc, http://www.cygnusinc.net/

  4. L. Cantarero, J. Butler, J. Osborne, The adsorptive characteristics of proteins for polystyrene and their significance in solid-phase immunoassays. Anal. Biochem. 105, 375–382 (1980)

    Article  Google Scholar 

  5. O.A. Sadik, A.O. Aluoch, A. Zhou, Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron. 24, 2749–2765 (2009)

    Article  Google Scholar 

  6. M. Sawan, H. Yamu, J. Coulombe, Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits. Sys. Mag. 5, 21–39 (2005)

    Article  Google Scholar 

  7. C.M. Zierhofer, E.S. Hachmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Tran. Biomed. Eng. 43, 708–714 (1996)

    Article  Google Scholar 

  8. C. Sauer, M. Stanacevic, G. Cauwenberhs, N. Thakor, Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circuits Sys. 52(12), 2605–2613 (Dec 2005)

    Article  Google Scholar 

  9. Y. Li, J. Liu, A 13.56 MHz RFID transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuits, IEEE International Symposium on Circuits and Systems, (2005), pp. 5095–5098

    Google Scholar 

  10. K. Myny, S. Van Winckel, S. Steudel, P. Vicca, S. De Jonge, M.J. Beenhakkers, C.W Sele, N.A.J.M. van Aerle, G.H. Gelink, J. Genoe, P. Heremans, An inductively-coupled 64b organic RFID tag operating at 13,56 MHz with a data rate of 787b/s, IEEE International Solid-State Circuits Conference, 290–614 (2008)

    Google Scholar 

  11. A. Gore, S. Chakrabartty, S. Pal, E. Alocilja, A multi-channel femtoampere-sensitivity conductometric array for biosensing applications, 28th IEEE Engineering in Medicine and Biology Science Conference, 6489–6492 (2006)

    Google Scholar 

  12. M.R. Haider, S.K. Islam, M. Zhang, A low-power processing unit for in vivo monitoring and transmission of sensor signals. Sensors Trans. J. 84(10), 1625–1632 (Oct 2007)

    Google Scholar 

  13. C. Sauer, M. Stanacevic, G. Cauwenberhs, and N. Thakor, Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circuits Sys. 52(12), 2605–2613 (Dec 2005)

    Article  Google Scholar 

  14. Y. Li, J. Liu, A 13.56 MHz RFID transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuit, IEEE International Symposium on Circuits and Systems, 5095–5098 (2005)

    Google Scholar 

  15. K. Myny, S. Van Winckel, S. Steudel, P. Vicca, S. De Jonge, M.J. Beenhakkers, C.W Sele, N.A.J.M. van Aerle, G.H. Gelink, J. Genoe, P. Heremans, An inductively-coupled 64b organic RFID tag operating at 13,56 MHz with a data rate of 787b/s, IEEE International Solid-State Circuits Conference, 290–614 (2008)

    Google Scholar 

  16. M.R. Haider, S.K. Islam, S. Mostafa, Z. Mo, O. Taeho, Low-power low-voltage current readout circuit for inductively powered implant system. IEEE Trans. Biomed. Circuits Sys. 4(4), 205–213 (2010). ISSN: 1932-4545

    Article  Google Scholar 

  17. H.A. Wolpert, Use of continous glucose monitoring in the detection and prevention of hypoglycemia. J. Diabetes Sci. Technol. 1(1), 146–150 (Jan 2007)

    Google Scholar 

  18. Medtronic Minimed Inc, http://www.medtronicdiabetes.com/

  19. Abbot Inc, http://www.abbott.com/

  20. J.D. Newman, A.P.F. Turner, Home blood glucose biosesors: A commercial perspective. Biosens. Bioelectron. 20, 2435–2453 (2005)

    Article  Google Scholar 

  21. M. Frost, M.E. Meyerhoff, In vivo chemical sensors: Tackling biocompatibility. Anal. Chem. 78(21), 7370–7377 (2006)

    Article  Google Scholar 

  22. M.W. Jung, D.W. Kim, R.A. Jeong, H.C. Kim, Needle-type Multi-electrode Array Fabricated by MEMS Technology for the Hypodermic Continous Glucose Monitoring System. in Proceedings of the International Coference of EMBS. (San Francisco, 2004), pp. 1987–1989

    Google Scholar 

  23. H. Nim Choi, J. Hoon Han, J. Ae Park, J. Mi Lee, Won-Yong Lee, Amperometric glucose biosensor based on glucose oxidase encapsulated in carbon nanotube-titania-nafion composite film on platinized glassy carbon electrode. Electroanalysis 19(17), 1757–1763 (2007)

    Article  Google Scholar 

  24. A. Erdem, H. Karadeniz, A. Caliskan, Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleis acids ad biomolecular interactions. Electroanalysis 21(3–5), 461–471 (2009)

    Google Scholar 

  25. J. Wang, In vivo glucose monitoring: Towards “Sense and Act” feedback-loop individualized medical systems. Talanta 75, 636–641 (2008)

    Article  Google Scholar 

  26. E. Lin Tan, B.D. Pereles, B. Horton, R. Shao, M. Zourob, K. Ghee Ong, Implantable biosensors for real-time strain and pressure monitoring. Sensors 8, 6396–6406 (Oct 2008)

    Article  Google Scholar 

  27. Positive ID/Verichip White Paper, Development of an Implantable Glucose Sensor, http://www.positiveidcorp.com/white-papers.html

  28. S. Zimmermann, D. Fienbork, B. Stoeber, A.W. Flounders, D. Liepmann, in Proceeding Internatioal Conference on Solid-state Sensors. A microneedle-based glucose monitor: Fabrication on a wafer-level using in-device enzyme immobilization (Actuators and Microsystems, Boston, MA, 2003), pp. 99–102

    Google Scholar 

  29. A. Hassibi, T.H. Lee, A programmable 0.18-μm CMOS electrochemical sensor microarray for biomolecular detection. IEEE Sens. J. 6(6), 1380–1388 (Dec 2006)

    Article  Google Scholar 

  30. R.D. Beach, R.W. Conlan, M.C. Godwin, F. Moussy, Towards a miniature implantable in vivo telemetry monitoring system dinamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors. IEEE Tran. Instrum. Meas. 54(1), 61–72 (Feb 2005)

    Article  Google Scholar 

  31. M.R. Haider, S. Mostafa, S.K. Islam, A Low-Power Sensor Read-Out Circuit with FSK Telemetry for Inductively-Powered Implant System, in IEEE Midwest Symposium on Circuits and Systems, MWSCAS, (2008), pp. 450–453

    Google Scholar 

  32. J. Sacristán-Riquelme, F. Segura, M. Teresa Osés, Simple and efficient inductive telemetry system with data and power transmission. Microelectron. J. 39(1), 103–111 (Jan 2008)

    Article  Google Scholar 

  33. P. Vaillancourt, A. Djemouai, J.F. Harvey, M. Sawan, EM radiation behaviour upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. 19th IEEE. Eng. Med. Biol. Sci. Conf. 6, 2499–2502 (1997)

    Google Scholar 

  34. J. Colomer-Farrarons, J. Brufau, P. Miribel-Català, A. Saiz-Vela, M. Puig-Vidal, J. Samitier, Power Conditioning Circuitry for a Self-Powered Mobile System Based on an Array of Micro PZT Generators in a 0.13 μM Technology, IEEE Insternational Symposium on Industrial Electronics, (June 2007), pp. 2353–2357

    Google Scholar 

  35. A. Lasia. Electrochemical Impedance Spectroscopy and Its Applications Modern Aspects of Electrochemistry, vol. 32, (New york, Kluwer Academic/Plenum Publisher, 1999), Chapter 2, pp. 143–243

    Google Scholar 

  36. L. Yang, Y. Li, C.L. Griffis, M.G. Johnson, Interdigitated microelectrode (IME) impedance sensor for the detection of ciable Salmonella typhimurium. Biosens. Bioelectron. 19(10), 1139–1147 (2004)

    Article  Google Scholar 

  37. A. De Marcellis, G. Ferri, M. Patrizi, V. Stornelli, A. D’Amico, C. Di Natale, E. Martinelli, A. Alimelli, R. Paolesse, An integrated analog lock-in amplifier for low-voltage low-frequency sensor interface, International Workshop on Advances in Sensors and Interface, IWASI, (June 2007), pp. 1–5

    Google Scholar 

  38. D. Rairigh, A. Mason, C. Yang, Analysis of on-chip impedance spectroscopy methodologies for sensor arrays. Sens. Lett. 4(4), 398–402 (2006)

    Article  Google Scholar 

  39. A.E. Moe, S.R. Marx, I. Bhinderwala, D.M. Wilson, A miniaturuzed lock-in amplifier design suitable for impedance measurements in cells. Proc. IEEE Sensors 1(24–27), 215–218 (AUTRICHE 2004)

    Google Scholar 

  40. Texas Instruments TRF7960 (Rev. E) on-line documentation, http://focus.ti.com/docs/prod/folders/print/trf7960.html

  41. C.G. Zoski, Handbook of electrochemistery. Elseiber. (2007). ISBN: 0-444-51958-0

    Google Scholar 

  42. J.C. Lotters, W. Olthuis, P.H. Veltink, P. Bergveld, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145–147 (1997). doi:10.1088/0960-1317/7/3/017

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Colomer-Farrarons .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Colomer-Farrarons, J., Miribel-Català, P.L. (2011). CMOS Front-End Architecture for In-vivo Biomedical Subcutaneous Detection Devices. In: A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0686-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0686-6_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0685-9

  • Online ISBN: 978-94-007-0686-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics