Skip to main content

Urban Dynamics Analysis Using Spatial Metrics Geosimulation

  • Chapter
  • First Online:
Spatial Analysis and Modeling in Geographical Transformation Process

Part of the book series: GeoJournal Library ((GEJL,volume 100))

Abstract

To simulate urban land-use pattern for past and future through constructing spatial model, dynamics analysis of urban land-use pattern to abstract spatial process of urbanization is an important step. Spatial metrics provide good links between urban land-use pattern and process. This research analyzes urban dynamics of Yokohama city at multi-category system and high spatial resolution scale in terms of spatial metrics under the support of the data set “Detailed Digital Information (10 m Grid Land Use) of Metropolitan Area” of Tokyo. The results show that the dynamics are presented well using the spatial metrics at the micro-scale. Comparison of the analysis results between multi-category system and binary-category system is carried out to investigate the difference in presenting urban dynamics in terms of spatial metrics at different spatial scales. The results indicate that the difference in depicting the process of urban dynamics exists at different scales, and analyzing urban dynamics at multi-scale using spatial metrics contributes to comprehensive interpretation of urban dynamics. The analyses also offer useful information for research on selecting metrics in interpretation of urban dynamics.

This chapter is improved from “Yaolong Zhao and Yuji Murayama (2006), Urban dynamics analysis using spatial metrics: A case study of Yokohama city, Tsukuba Geoenvironmental Sciences, 2, 9–18”, with permission from University of Tsukuba, Geoenvironmental Science Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti, M., & Waddell, P. (2000). An integrated urban development and ecological simulation model. Integrated Assessment, 1, 215–227.

    Article  Google Scholar 

  • Antrop, M. (2000). Changing patterns in the urbanized countryside of Western Europe. Landscape Ecology, 15, 257–270.

    Article  Google Scholar 

  • Barnsley, M. J., Moller-Jensen, L., & Barr, S.L. (2001). Inferring urban land use by spatial and structural pattern recognition. In J. P. Donnay, M. J. Barnsley, & P. A. Longley (Eds.), Remote sensing and urban analysis (pp. 115–144). London: Taylor and Francis.

    Google Scholar 

  • Batty, M. (1989). Urban modeling and planning: Reflections, retrodictions and prescriptions. In B. Macmillan (Ed.), Remodeling geography (pp. 147–169). Oxford: Basil Blackwell.

    Google Scholar 

  • Batty, M. (1994). A chronicle of scientific planning: The Anglo-American modeling experience. Journal of the American Planning Association, 60, 7–12.

    Article  Google Scholar 

  • Batty, M., & Howes, D. (2001). Predicting temporal patterns in urban development from remote imagery. In J. P. Donnay, M. J. Barnsley, & P. A. Longley (Eds.), Remote sensing and urban analysis (pp. 185–204). London: Taylor and Francis.

    Chapter  Google Scholar 

  • Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24, 247–261.

    Article  Google Scholar 

  • Clarke, K. C., Parks, B. O., & Crane, M. P. (2002). Geographic information systems and environmental modeling. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Dunn, C. P., Sharpe, D. M., Guntensbergen, G. R., Stearns, F., & Yang, Z. (1991). Methods for analyzing temporal changes in landscape pattern. In M. G. Turner & R. H. Gardner (Eds.), Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity (pp. 173–198). New York: Springer.

    Google Scholar 

  • Geoghegan, J., Wainger, L. A., & Bockstael, N. E. (1997). Spatial landscape indices in a hedonic framework: An ecological economics analysis using GIS. Ecological Economics, 23, 251–264.

    Article  Google Scholar 

  • Grimm, N. B., Grove, J. M., Pickett, S. T. A., & Redman, C. L. (2000). Integrated approaches to long-term studies of urban ecological systems. Bioscience, 50, 571–584.

    Article  Google Scholar 

  • Herold, M., Couclelis, H., & Clarke, K. C. (2005). The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 29, 369–399.

    Article  Google Scholar 

  • Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment, 86, 286–302.

    Article  Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11, 261–269.

    Article  Google Scholar 

  • Lin, G. C. S., & Ho, S. P. S. (2003). China’s land resources and land-use change: Insights from the 1996 land survey. Land Use Policy, 20, 87–107.

    Article  Google Scholar 

  • McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). Spatial pattern analysis program for categorical maps. Amherst, MA: University of Massachusetts

    Google Scholar 

  • McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247–260.

    Article  Google Scholar 

  • Mendelbrot, B. B. (1983). The fractal geometry of nature. New York: W.H. Freeman and Company.

    Google Scholar 

  • Milne, B. T. (1991). Lessons from applying fractal models to landscape patterns. In M. G. Turner & R. H. Gardner (Eds.), Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity (pp. 199–235). New York: Springer.

    Google Scholar 

  • Parker, D. C., Evans, T. P., & Meretsky, V. (2001). Measuring emergent properties of agent-based landuse/landcover models using spatial metrics. Proceedings of the 7th annual conference of the international society for computational economics, Yale University.

    Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology Systematics, 32, 333–365.

    Article  Google Scholar 

  • Qi, Y., & Wu, J. G. (1996). Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices. Landscape Ecology, 11, 39–49.

    Article  Google Scholar 

  • Shannon, C., & Weaver, W. (1964). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Torrens, P. M. (2006). Simulating sprawl. Annals of the Association of American Geographers, 96, 248–275.

    Article  Google Scholar 

  • Treitz, P., & Rogan, J. (2004). Remote sensing for mapping and monitoring land-cover and land-use change-an introduction. Progress in Planning, 61, 269–279.

    Article  Google Scholar 

  • Turner, M. G., O’Neill, R. V., Gardner, R. H., & Milne, B. T. (1989). Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 3, 153–162.

    Article  Google Scholar 

  • White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modeling of urban land-use dynamics. Environment and Planning B, 24, 323–343.

    Article  Google Scholar 

  • Wu, J., Jelinski, E. J., Luck, M., & Tueller, P. T. (2000). Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Geographic Information Sciences, 6, 6–19.

    Google Scholar 

  • Zhao, Y., & Murayama, Y. (2005). Effect characteristics of spatial resolution on the analysis of urban land-use pattern: a case study of CBD in Tokyo using spatial autocorrelation index. In Y. Murayama, & G. Du (Eds.), Cities in global perspective: Diversity and transition (pp. 585–594). Tokyo: IGU Urban Commission.

    Google Scholar 

  • Zhao, Y., & Murayama, Y. (2006). Effect of spatial scale on urban land-use pattern analysis in different classification systems: An empirical study in the CBD of Tokyo. Theory and Applications of GIS, 14, 29–42.

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China, No.40901090, 70863014; Foundation of Japan Society for the Promotion of Science (JSPS), No.19.07003; Talents Introduced into Universities Foundation of Guangdong Province of China, No. 2009–26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaolong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhao, Y., Murayama, Y. (2011). Urban Dynamics Analysis Using Spatial Metrics Geosimulation. In: Murayama, Y., Thapa, R. (eds) Spatial Analysis and Modeling in Geographical Transformation Process. GeoJournal Library, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0671-2_10

Download citation

Publish with us

Policies and ethics