Skip to main content

Spatial Analysis: Evolution, Methods, and Applications

  • Chapter
  • First Online:
Spatial Analysis and Modeling in Geographical Transformation Process

Part of the book series: GeoJournal Library ((GEJL,volume 100))

Abstract

In a narrow sense, spatial analysis has been described as a method for analyzing spatial data, while in a broad sense it includes revealing and clarifying processes, structures, etc., of spatial phenomena that occur on the Earth’s surface. Ultimately, it is designed to support spatial decision-making, and to serve as a tool for assisting with regional planning and the formulation of government policies, among other things. The world of GIS includes such terms as spatial data manipulation, spatial data analysis, spatial statistical analysis, and spatial modeling. While there are admittedly slight differences in the definitions of these terms (O’Sullivan & Unwin, 2003), they are subsumed in this chapter, which will examine spatial analysis in a broad sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi Nejad Masouleh, F. (2006). A geographical study of school attendance areas using multiplicatively weighted Voronoi diagrams: A case of Rasht City, Iran. Geographical Review of Japan, 79, 700–714.

    Google Scholar 

  • Alberti, M., & Waddell, P. (2000). An integrated urban development and ecological simulation model. Integrated Assessment, 1, 215–227.

    Article  Google Scholar 

  • An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. (2005). Exploring complexity in a human–environment system: An agent-based spatial model for multidisciplinary and multiscale integration. Annals of the Association of American Geographers, 95, 54–79.

    Article  Google Scholar 

  • Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer.

    Google Scholar 

  • Anselin, L., Syabri, I., & Kho, Y. (2010). GeoDa: An introduction to spatial data analysis. In M. M. Fischer & A. Getis (Eds.), Handbook of spatial data analysis (pp. 73–89). Berlin: Springer.

    Chapter  Google Scholar 

  • Bell, E. J. (1974). Markov analysis of land use change: An application of stochastic processes to remotely sensed data. Socio-Economic Planning Sciences, 8, 311–316.

    Article  Google Scholar 

  • Benenson, I., & Torrens, P. M. (2004). Geosimulation. Chichester: Wiley.

    Book  Google Scholar 

  • Berger, T. (2001). Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, 25, 245–260.

    Article  Google Scholar 

  • Berry, B. J. L., & Marble, D. F. (1968). Spatial analysis: A reader in statistical geography. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Bonham-Carter, G. (1994). Geographic information systems for geoscientists: Modeling with GIS. New York: Pergamon.

    Google Scholar 

  • Boyle, P. J., & Dunn, C. E. (1991). Redefinition of enumeration district centroids: A test of their accuracy using Thiessen polygons. Environmental Planning A, 23, 1111–1119.

    Article  Google Scholar 

  • Clarke, K. C., Hoppen, S., & Gaydos, L. J. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24, 247–261.

    Article  Google Scholar 

  • Clement, F., Orange, D., Williams, M., Mulley, C., & Epprecht, M. (2009). Drivers of afforestation in Northern Vietnam: Assessing local variations using geographically weighted regression. Applied Geography, 29, 561–576.

    Article  Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. London: Pion.

    Google Scholar 

  • Davidson, D., Theocharopoulos, S., & Bloksma, R. (1994). A land evaluation project in Greece using GIS and based on Boolean and fuzzy set methodologies. International Journal of Geographical Information Systems, 8, 369–384.

    Article  Google Scholar 

  • Deadman, P., Robinson, D., Moran, E., & Brondizio, E. (2004). Colonist household decision making and land-use change in the Amazon rainforest: An agent based simulation. Environment and Planning B, 31, 693–709.

    Article  Google Scholar 

  • Fisher, M., Scholten, H. J., & Unwin, D. (1996). Spatial analytical perspectives on GIS, new potential and new models. London: Taylor & Francis.

    Google Scholar 

  • Fortin, M.-J., & Dale, M. R. T. (2009). Spatial autocorrelation. In A. S. Fotheringham & P. A. Rogerson (Eds.), The SAGE handbook of spatial analysis (pp. 89–103). London: Sage.

    Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. New York: Wiley.

    Google Scholar 

  • Fotheringham, A. S., & Wegener, M. (2000). Spatial models and GIS. London: Taylor & Francis.

    Google Scholar 

  • Fotheringham, S., & Rogerson, P. (1994). Spatial analysis and GIS. London: Taylor & Francis.

    Google Scholar 

  • Geoghegan, J., Wainger, L. A., & Bockstael, N. E. (1997). Spatial landscape indices in a hedonic framework: An ecological economics analysis using GIS. Ecological Economics, 23, 251–264.

    Article  Google Scholar 

  • Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206.

    Article  Google Scholar 

  • Hagen, A. (2003). Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science, 17, 235–249.

    Article  Google Scholar 

  • Hoffman, M., Kelley, H., & Evans, T. (2002). Simulating land cover change in South-central Indiana: An agent-based model of deforestation and afforestation. In M. E. Janssen (Ed.), Complexity and ecosystem management: The theory and practice of multi-agent systems (pp. 218–247). Cheltenham: Edward Elgar.

    Google Scholar 

  • Huigen, M. G. A. (2004). First principles of the MameLuke multi-actor modeling framework for land-use change, illustrated with a Philippine case study. Journal of Environmental Management, 72, 5–12.

    Article  Google Scholar 

  • Irwin, E. G., & Bockstael, N. E. (2002). Interacting agents, spatial externalities and the evolution of residential land use patterns. Journal of Economic Geography, 2, 31–54.

    Article  Google Scholar 

  • Isard, W. (1956). Location and space-economy. New York: Wiley.

    Google Scholar 

  • Jaimes, N. B. P., Sendra, J. B., Delgado, M. G., & Plata, R. F. (2010). Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography, 30, 576–591.

    Google Scholar 

  • Laine, T., & Busemeyer, J. (2004). Comparing agent-based learning models of land-use decision making. In C. L. M. Lovett, C. Schunn, & P. Munro (Eds.), Proceedings of the 6th international conference on cognitive modeling (pp. 142–147). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Li, X., & Yeh, A. G. (2001). Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment and Planning A, 33, 1445–1462.

    Article  Google Scholar 

  • Ligtenberg, A., Bregt, A. K., & van Lammeren, R. (2001). Multi-actor-based land use modelling: Spatial planning using agents. Landscape and Urban Planning, 56, 21–33.

    Article  Google Scholar 

  • Liu, Y. (2009). Modelling urban development with geographical information system and cellular automata. Boca Raton, FL: Taylor and Francis.

    Google Scholar 

  • Longley, P., & Batty, M. (1996). Spatial analysis: Modelling in a GIS environment. Cambridge: GeoInformation International.

    Google Scholar 

  • Lopez, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land cover and land use change in the urban fringe: A case in Morelia city Mexico. Landscape and Urban Planning, 55, 271–285.

    Article  Google Scholar 

  • Manson, S. M. (2000). Agent-based dynamic spatial simulation of land use/cover change in the Yucatan peninsula, Mexico. Proceedings of the 4th international conference on integrating GIS and environmental modeling (GIS/EM4): Problems, prospects and research needs, Banff, AB.

    Google Scholar 

  • Mendelbrot, B. B. (1983). The fractal geometry of nature. New York: W. H. Freeman.

    Google Scholar 

  • Mu, L. (2004). Polygon characterization with the multiplicatively weighted Voronoi diagram. Professional Geographer, 56, 223–239.

    Google Scholar 

  • Murayama, Y. (2000). Land use change in Tokyo. In Y. Murayama (Ed.), Japanese urban system (pp. 227–236). Dordrecht: Kluwer.

    Google Scholar 

  • Murayama, Y. (2006). Kukan-bunseki to GIS (Spatial analysis with GIS). In A. Okabe, & Y. Murayama (Eds.), GIS de Kukan-bunseki (Spatial analysis using GIS) (pp. 1–20). Tokyo: Kokon-shoin in Japanese.

    Google Scholar 

  • Nakaya, T. (2008). Geographically weighted regression (GWR). In K. K. Kemp (Ed.), Encyclopedia of geographic information science (pp. 179–184). London: Sage.

    Google Scholar 

  • Nordbeck, S., & Rystedt, B. (1972). Computer cartography: The mapping system NORMAP: Location models. Lund: Studentlitteratur.

    Google Scholar 

  • Ogneva-Himmelberger, Y., Pearsall, H., & Rakshit, R. (2009). Concrete evidence & geographically weighted regression: A regional analysis of wealth and the land cover in Massachusetts. Applied Geography, 29, 478–487.

    Article  Google Scholar 

  • Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tessellations: Concepts and applications of Voronoi diagrams. Chichester: Wiley.

    Google Scholar 

  • Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and application. Geographical Analysis, 27, 286–306.

    Article  Google Scholar 

  • O’Sullivan, D., & Unwin, D. J. (2003). Geographic information analysis. Hoboken, NJ: Wiley.

    Google Scholar 

  • Páez, A., & Wheeler, D. C. (2010). Geographically weighted regression. In M. M. Fischer, & A. Getis (Eds.), Handbook of spatial data analysis (pp. 461–486). Berlin: Springer.

    Google Scholar 

  • Parker, D. C., Evans, T. P., & Meretsky, V. (2001). Measuring emergent properties of agent-based landuse/landcover models using spatial metrics. Proceedings of 7th annual conference of the international society for computational economics, Yale University.

    Google Scholar 

  • Parker, D., Manson, S., Janssen, M., Hoffman, M., & Deadman, P. (2003). Multiagent system models for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93, 316–340.

    Article  Google Scholar 

  • Ripley, B. (1981). Spatial statistics. Chichester: Wiley.

    Book  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Soares-Filho, B. S., Alencar, A., Nespad, D., Cerqueira, G. C., Dial, M., Del, C., et al. (2004). Simulating the response of land-cover changes to road paving and governance along a major Amazon Highway: The Santarem-Cuiaba corridor. Global Change Biology, 10, 745–764.

    Article  Google Scholar 

  • Stefanakis, E., Vazirgiannis, M., & Sellis, T. (1999). Incorporation fuzzy set methodologies in DBMS repository for the application domain of GIS. International Journal of Geographical Information Science, 13, 657–675.

    Article  Google Scholar 

  • Tang, J., Wang, L., & Yao, Z. (2007). Spatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. International Journal of Remote Sensing, 28, 3255–3271.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2009). Land use change factors in Kathmandu valley: A GWR approach. In B. G. Lees, & S. W. Laffan (Eds.), Proceedings of the 10th international conference on geocomputation (pp. 255–260). Sydney, NSW: The University of New South Wales.

    Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2010a). Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Applied Geography, 30, 70–83.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2010b). Urban growth modelling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems. DOI: 10.1016/j.compenvurbsys.2010.07.005.

    Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  • Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311, 419–424.

    Article  Google Scholar 

  • Yuan, H., Van Der Wiele, C. F., & Khorram, S. (2009). An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sensing, 1, 243–265.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8, 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Murayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Murayama, Y., Thapa, R.B. (2011). Spatial Analysis: Evolution, Methods, and Applications. In: Murayama, Y., Thapa, R. (eds) Spatial Analysis and Modeling in Geographical Transformation Process. GeoJournal Library, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0671-2_1

Download citation

Publish with us

Policies and ethics