Skip to main content

Patterns of biodiversity

Keywords

  • Biodiversity gradients
  • Evenness
  • Functional diversity
  • Human impacts
  • Low-diversity ecosystem
  • Resilience

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   152.59
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   152.59
Price includes VAT (Netherlands)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21
Fig. 4.22
Fig. 4.23
Fig. 4.24
Fig. 4.25
Fig. 4.26
Fig. 4.27
Fig. 4.28
Fig. 4.29
Fig. 4.30
Fig. 4.31
Fig. 4.32
Box Fig. 4.1
Box Fig. 4.2
Box Fig. 4.3
Box Fig. 4.4
Box Fig. 4.5
Box Fig. 4.6
Box Fig. 4.7
Box Fig. 4.8
Box Fig. 4.9
Box Fig. 4.10
Box Fig. 4.11
Box Fig. 4.12
Box Fig. 4.13
Box Fig. 4.14
Box Fig. 4.15
Box Fig. 4.16
Box Fig. 4.17
Box Fig. 4.18
Box Fig. 4.19
Box Fig. 4.20
Box Fig. 4.21
Box Fig. 4.22
Box Fig. 4.23
Box Fig. 4.24
Box Fig. 4.25

References

  • Ahlgren G, van Nieuwerburgh L, Wänstrand L, Peredsén M, Boberg M, Snoeijs P (2005) Imbalance of fatty acids in the base of the Baltic Sea food web – a mesocosm study. Canadian Journal of Fisheries and Aquatic Sciences 62:2240–2253

    CrossRef  CAS  Google Scholar 

  • Amcoff P, Börjesson H, Eriksson R, Norrgren L, McDonald G, et al. (1998) Effects of thiamine treatments on survival of M74-affected feral Baltic salmon. In: McDonald G, Fitzsimons JD, Honeyfield DC (eds) Early life stage mortality syndrome in fishes of the Great Lakes and Baltic Sea. American Fisheries Society Symposium 21:31–40

    Google Scholar 

  • Andersson M, Schubert H, Pedersén M, Snoeijs P (2006) Different patterns of carotenoid composition and photosynthesis acclimation in two tropical red algae. Marine Biology 149:653–665

    CrossRef  CAS  Google Scholar 

  • Attrill MJ, Rundle SD (2002) Ecotone or ecocline: ecological boundaries in estuaries. Estuarine and Coastal Shelf Science 55:929–936

    CrossRef  Google Scholar 

  • Audzijonyte A, Väinölä R (2005) Diversity and distributions of circumpolar fresh- and brackish-water Mysis. Hydrobiologia 544:89–141

    CrossRef  CAS  Google Scholar 

  • Banks PB, Nordström M, Ahola M, Salo P, Fey K, Korpimäki E (2008) impacts of alien mink predation on island vertebrate communities of the Baltic Sea archipelago: review of a long- term experimental study. Boreal Environment Research 13:3–16

    Google Scholar 

  • Barnes RSK (1974) Estuarine Biology. Edward Arnold Ltd., London, 76 pp

    Google Scholar 

  • Barnes RSK (1989) What, if anything, is a brackish-water fauna? Transactions of the Royal Society of Edinburgh: Earth Sciences 80:235–240

    CrossRef  Google Scholar 

  • Bengtsson BE, Hill C, Bergman Å, Brandt I, Johansson N et al (1999) Reproductive disturbances in Baltic fish: a synopsis of the FiRe Project. Ambio 28:2–8

    Google Scholar 

  • Bergström L, Tatarenkov A, Johannesson K, Jonsson RB, Kautsky L (2005) Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the brackish Baltic Sea. Journal of Phycology 41:1025–1038

    CrossRef  CAS  Google Scholar 

  • Bergström U, Sundblad G, Downie AL, Snickars M, Bostrom C, Lindegarth M (2013) Evaluating eutrophication management scenarios in the Baltic Sea using species distribution modelling. Journal of Applied Ecology 50:680–690

    CrossRef  Google Scholar 

  • Blanco-Bercial L, Cornils A, Copley N, Bucklin A (2014) DNA barcoding of marine copepods: assessment of analytical approaches to species identification. PLoS Currents 6 [http://dx.doi.org/10.1371/currents.tol.cdf8b74881f87e3b01d56b43791626d2]

  • Blaxter M, Mann J, Chapman T, Thomas F, Whitton C et al (2005) Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B 360:1935–1943

    CrossRef  CAS  Google Scholar 

  • Bonaglia S, Nascimento FJA, Bartoli M, Klawonn I, Brüchert V (2014) Meiofauna increases bacterial denitrification in marine sediments. Nature Communications 5:5133

    CrossRef  CAS  Google Scholar 

  • Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. Journal of Experimental Marine Biology and Ecology 333:383–391

    CrossRef  Google Scholar 

  • Boström MK, Östman Ö, Bergenius MAJ, Lunneryd SG (2012) Cormorant diet in relation to temporal changes in fish communities. ICES Journal of Marine Science 69:175–183

    CrossRef  Google Scholar 

  • Bregnballe T, Lynch J, Parz-Gollner R, Marion L, Volponi S et al (2014) Breeding numbers of great cormorants Phalacrocorax carbo in the Western Palearctic, 2012-2013. IUCN Wetlands International Cormorant Research Group Report. Scientific Report from DCE – Danish Centre for Environment and Energy 99:1–223

    Google Scholar 

  • Bremner J, Rogers SI, Frid CLJ (2006a) Matching biological traits to environmental conditions in marine benthic ecosystems. Journal of Marine Systems 60:302–316

    CrossRef  Google Scholar 

  • Bremner J, Rogers SI, Frid CLJ (2006b) Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecological Indicators 6:609–622

    CrossRef  Google Scholar 

  • Brodniewicz I (1965) Recent and some Holocene Foraminifera of the southern Baltic Sea 10:131–248

    Google Scholar 

  • Bylund G, Lerche O (1995) Thiamine therapy of M74 affected fry of Atlantic salmon Salmo salar. Bulletin of the European Association of Fish Pathology 15:93–97

    Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    CrossRef  CAS  Google Scholar 

  • Choo KS, Nilsson J, Pedersén M, Snoeijs P (2005) Photosynthesis, carbon uptake and antioxidant defence in two coexisting filamentous green algae under different stress conditions. Marine Ecology Progress series 292:127–138

    CrossRef  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    CrossRef  CAS  Google Scholar 

  • Creer S, Fonseca VG, Porazinska DL, Giblin-Davis RM, Sung W (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 19:4–20

    CrossRef  Google Scholar 

  • Dahl E (1956) Ecological salinity boundaries in poikilohaline waters. Oikos 7:1–21

    CrossRef  Google Scholar 

  • Deaton LE, Greenberg MJ (1986) There is no horohalinicum. Estuaries 9:20–30

    CrossRef  CAS  Google Scholar 

  • Dupont CL, Larsson J, Yooseph S, Ininbergs K, Goll J et al (2014) Functional trade-offs underpin salinity-driven divergence in microbial community composition. PLoS ONE 9(2):e89549

    CrossRef  CAS  Google Scholar 

  • Elmgren R, Hill C (1997) Ecosystem function at low biodiversity – the Baltic example. In: Ormond R, Gage J, Angel M (eds) Marine biodiversity, patterns and processes. Cambridge University Press, Cambridge, pp 319–336

    CrossRef  Google Scholar 

  • Eriksson BK, Sieben K, Eklöf J, Ljunggren L, Olsson J et al (2011) Effects of altered offshore food webs on coastal ecosystems emphasize the need for cross-ecosystem management. AMBIO 40:786–797

    CrossRef  Google Scholar 

  • Esteban R, Moran JF, Becerril JM, García-Plazaola JI (2015) Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany 119:63–75

    CrossRef  CAS  Google Scholar 

  • Fenchel T, Finlay B (2008) Oxygen and the spatial structure of microbial communities. Biological Review 83:553–569

    Google Scholar 

  • Finenko ZZ (2008) The Black Sea Environment. In: Kostoanoy AG, Kosarev AN (eds) The handbook of environmental chemistry. Springer, Berlin, pp 351–374

    Google Scholar 

  • Fiskhälsan (2007) Produktion av lax och havsöring baserad på vildfisk från Östersjön och Västerhavet – kontrollprogram för vissa smittsamma sjukdomar samt utfallet av M74. Fiskhälsan FH AB, Älvkarleby 10 pp

    Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Chapin T, Rockström J (2010) Resilience thinking: integrating resilience, adaptability and transformability. Ecology and Society 15(4):20

    CrossRef  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T et al (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution and Systematics 35:557–581

    CrossRef  Google Scholar 

  • Fox JW (2013) The intermediate disturbance hypothesis should be abandoned. Trends in Ecology and Evolution 28:86–92

    CrossRef  Google Scholar 

  • Frenzel P, Tech T, Bartholdy J (2005) Checklist and annotated bibliography of recent Foraminifera from the German Baltic Sea coast. Studia Geologica Polonica 124:67–86

    Google Scholar 

  • Frenzel P, Keyser D, Viehberg F (2010) An illustrated key and (palaeo)ecological primer for postglacial to recent Ostracoda (Crustacea) of the Baltic Sea. Boreas 39:567–575

    Google Scholar 

  • Giere O (2009) Meiobenthology – the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin Heidelberg 527 pp

    Google Scholar 

  • Grime JP (1973a) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    CrossRef  Google Scholar 

  • Grime JP (1973b) Control of species density in herbaceous vegetation. Journal of Environmental Management 1:151–167

    Google Scholar 

  • Grime JP (1977) Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111:1169–1194

    CrossRef  Google Scholar 

  • Gross K, Cardinale BJ (2007) Does species richness drive community production or vice versa? – reconciling historical and contemporary paradigms in competitive communities. American Naturalist 170:207–220

    CrossRef  Google Scholar 

  • Gupta BKS (1999) Modern foraminifera. Kluwer Academic Publishers, Dordrecht 384 pp

    Google Scholar 

  • Haahtela I (1990) What do Baltic studies tell us about the isopod Saduria entomon? Annales Zoologici Fennici 27:269–278

    Google Scholar 

  • Halinen K, Fewer DP, Sihvonen LM, Lyra C, Eronen E, Sivonen K (2008) Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiology Ecology 64:199–208

    CrossRef  CAS  Google Scholar 

  • Hällfors G (2004) Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups). Baltic Sea Environment Proceedings 95:1–208

    Google Scholar 

  • Hällfors G, Niemi Å (1975) Diatoms in surface sediment from deep basins in the Baltic Proper and the Gulf of Finland. Merentutkimuslaitos Julkaisu 240:71–77

    Google Scholar 

  • Hansson S, Karlsson L, Ikonen E, Christensen O, Mitans A et al (2001) Stomach analyses of Baltic salmon from 1959–1962 and 1994–1997: possible relations between diet and yolk-sac-fry mortality (M74). Journal of Fish Biology 58:1730–1745

    CAS  Google Scholar 

  • Harding and Härkönen (1999) Development in the Baltic grey seal (Halichoerus grypus) and ringed seal (Phoca hispida) populations during the 20th century. Ambio 28:619–627

    Google Scholar 

  • Härkönen T, Galatius A, Bräeger S, Karlsson O, Ahola M (2013) Distribution of Baltic seals. HELCOM Core Indicator Report 2013, 34 pp [http://www.helcom.fi]

  • Härkönen T, Galatius A, Harding K, Karlsson O, Ahola M, Avellan L (2015) Distribution of Baltic seals. HELCOM Core Indicator Report, December 2015, 18 pp [http://www.helcom.fi]

  • Hebert PD, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270:313–321

    CrossRef  CAS  Google Scholar 

  • Helander B, Bignert A, Herrmann C, Stjernberg T (2015) White-tailed eagle productivity. HELCOM Core Indicator Report. [http://www.helcom.fi]

  • HELCOM (2012a) Check-list of Baltic Sea macro-species. Baltic Sea Environment Proceedings 130:1–203

    Google Scholar 

  • HELCOM (2012b) Indicator-based assessment of coastal fish community status in the Baltic Sea 2005–2009. Baltic Sea Environment Proceedings 131:1–88

    Google Scholar 

  • Herlemann DPR, Labrenz M, Jürgens K, Bertilsson BS, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal 5:1571–1579

    CrossRef  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend? The Quarterly Review of Biology 67:283–335

    CrossRef  Google Scholar 

  • Herrmann C, Bregnballe T, Larsson K, Rattiste K (2014) Population development of great commorant. HELCOM Baltic Sea Environment Fact Sheet. [http://www.helcom.fi]

  • Herrmann C, Krone O, Stjernberg T, Helander B (2011) Population development of Baltic bird species: white-tailed sea eagle (Haliaeetus albicilla). HELCOM Baltic Sea Environment Fact Sheet. [http://www.helcom.fi]

  • Herrmann C, Wendt J, Köppen U, Kralj J, Feige KD (2015) Changes in the migration pattern of the great cormorant Phalacrocorax carbo sinensis from the 1930s until today. Vogelwarte 53:139–154

    Google Scholar 

  • Hill C, Elmgren R (1987) Vertical distribution in the sediment in the co-occurring amphipods Pontoporeia affinis and P. femorata. Oikos 49:221–229

    CrossRef  Google Scholar 

  • Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters 12:1405–1419

    CrossRef  Google Scholar 

  • Hoffmann C (1950) Über das Vorkommen endemischer Algen in der Ostsee. Kieler Meeresforschung 7:24–34

    Google Scholar 

  • Höhnk W, Vallin S (1953) Epidemisches Absterben von Eurytemora im Bottnischen Meerbusen verursacht durch Leptolegnia baltica nov. spec. Veröffentlichungen des Institutes für Meeresforschung in Bremerhaven 2:215–223

    Google Scholar 

  • Honeyfield DC, Hinterkopf JP, Fitzsimons JD, Tillitt DE, Zajicek JL, Brown SB (2005) Development of thiamine deficiencies and early mortality syndrome in lake trout by feeding experimental and feral fish diets containing thiaminase. Journal of Aquatic Animal Health 17:4–12

    CrossRef  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75:3–35

    CrossRef  Google Scholar 

  • Horn HS (1975) Markovian properties of forest succession. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press, Cambridge, MA, pp 196–211

    Google Scholar 

  • Hustedt F (1925) Bacillariales aus den Salzgewässern bei Oldesloe in Holstein. Mitteilungen der Geographischen Gesellschaft und des Naturhistorischen Museums in Lübeck 30:84–120

    Google Scholar 

  • ICES (2012) Report of the Baltic salmon and trout assessment working group (WGBAST), 15–23 March 2012, Uppsala, Sweden. ICES CM 2012/ACOM:08. 347 pp

    Google Scholar 

  • Ininbergs K, Bergman B, Larsson J, Ekman M (2015) Microbial metagenomics in the Baltic Sea: recent advancements and prospects for environmental monitoring. AMBIO 44(Supplement):S439–S450

    CrossRef  Google Scholar 

  • Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62

    CrossRef  CAS  Google Scholar 

  • Jacobsen JA, Hansen LP (1996) The food of Atlantic salmon, Salmo salar L., north of the Faroe Islands. Conference and Meeting Document M 10. Anadromous and Catadromous Fish Committee, ICES Annual Science Conference, 1996, Reykjavik, Iceland

    Google Scholar 

  • Jeffrey SW, Vesk M (1997) Introduction to marine phytoplankton and their pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. Unesco Publishing, Paris, pp 37–84

    Google Scholar 

  • Jernelöv A, Rosenberg R (1976) Stress tolerance of ecosystems. Environmental conservation 3:43–46

    CrossRef  Google Scholar 

  • Jueg U, Zettler ML (2015) Distribution and ecology of leeches (Hirudinea) in brackish waters of the German Baltic. Ecologica Montenegrina 2:42–50

    Google Scholar 

  • Kahl A (1928) Ciliata der Oldesloer Salzwasserquellen. Archiv für Hydrobiologie 19:50–123 [in German]

    Google Scholar 

  • Karlsson O, Härkönen T, Bäcklin BM (2007) Sälar på uppgång. Havet 2007:84–89 [in Swedish]

    Google Scholar 

  • Karpinsky M, Shiganova TA, Karunin DN (2005) The Caspian Sea Environment. In: Kostoanoy AG, Kosarev AN, The handbook of environmental chemistry. Springer, Berlin, pp 159-173

    Google Scholar 

  • Kautsky H (1995) Quantitative distribution of sublittoral plant and animal communities in the Baltic Sea gradient. In: Eleftheriou A, Ansell AA, Smith CJ (eds) Biology and ecology of shallow coastal waters. Olsen and Olsen, Fredensborg, pp 23–30

    Google Scholar 

  • Keinänen M, Uddström A, Mikkonen J, Casini M, Pönni J et al (2012) The thiamine deficiency syndrome M74, a reproductive disorder of Atlantic salmon (Salmo salar) feeding in the Baltic Sea, is related to the fat and thiamine content of prey fish. ICES Journal of Marine Science 69:516–528

    CrossRef  Google Scholar 

  • Khlebovich VV (1968) Some peculiar feature of the hydrochemical regime and the fauna of mesohaline waters. Marine Biology 2:47–49

    CrossRef  Google Scholar 

  • Kilpi M, Lorentsen SH, Petersen IK, Einarsson A (2015) Trends and drivers of change in diving ducks. TemaNord 2015:516, Nordic Council of Ministers, Copenhagen 2015

    Google Scholar 

  • Kinne O (1971) Salinity: animals – invertebrates. In: Kinne O (ed) Marine ecology, vol 1., Environmental factors, Part 2. John Wiley and Sons, New York NY, pp 821–996

    Google Scholar 

  • Kirchman DL (2008) Microbial diversity of the oceans, 2nd edn. John Wiley and Sons, Hoboken NJ 593 pp

    CrossRef  Google Scholar 

  • Kotwicki L, Grzelak K, Bełdowski J (2016) Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep-Sea Research Part II: Topical Studies in Oceanography 128:123–130

    Google Scholar 

  • Kruuk H (1995) Wild otters – predation and populations. Oxford University Press, Oxford, p 290

    Google Scholar 

  • Kurvinen L, Kilpi M, Nordström M, Öst M (2016) Drivers of decline and changed nest-site preference of the Baltic eider: an island-level analysis from southwestern Finland. Ornis Fennica 93:55–66

    Google Scholar 

  • Laamanen MJ, Forsström L, Sivonen K (2002) Diversity of Aphanizomenon flos-aquae (cyanobacterium) populations along a Baltic Sea salinity gradient. Applied and Environmental Microbiology 68:5296–5303

    CrossRef  CAS  Google Scholar 

  • Laamanen MJ, Gugger MF, Lehtimäki JM, Haukka K, Sivonen K (2001) Diversity of toxic and nontoxic Nodularia isolates (Cyanobacteria) and filaments from the Baltic Sea. Applied and Environmental Microbiology 67:4638–4647

    CrossRef  CAS  Google Scholar 

  • Laikre L, Palm S, Ryman N (2005) Genetic population structure of fishes: implications for coastal zone management. AMBIO 34:111–119

    CrossRef  Google Scholar 

  • Laine AO (2003) Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuarine, Coastal and Shelf Science 57:87–97

    CrossRef  CAS  Google Scholar 

  • Laine AO, Sandler H, Andersin AB, Stigzelius J (1997) Long-term changes of macrozoobenthos in the Eastern Gotland basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. Journal of Sea Research 38:135–159

    CrossRef  Google Scholar 

  • Lakowitz CW (1929) Die Algenflora der gesamten Ostsee (ausschl. Diatomeen). R. Friedländer, Danzig, 474 pp [in German]

    Google Scholar 

  • Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563

    CrossRef  CAS  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in plant community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545–556

    CrossRef  Google Scholar 

  • Leasi F, Norenburg JL (2014) The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea. PLoS ONE 9(8):e104385

    CrossRef  Google Scholar 

  • Litchman E, Klausmeier CA, Yoshiyma K (2009) Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences of the USA 106:2665–2670

    CrossRef  CAS  Google Scholar 

  • Lokko K (2014) Seasonal and spatial variability of zoopsammon communities in relation to environmental parameters. University of Tartu Press, Dissertationes Biologicae Universitatis Tartuensis 263:1–129 [PhD Thesis]

    Google Scholar 

  • MacArthur R, Wilson EO (1967) The Theory of Island Biogeography (reprint 2001). Princeton University Press, 224 pp

    Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144:265–283

    CrossRef  CAS  Google Scholar 

  • Mann DG (1999) Crossing the Rubicon: the effectiveness of the marine/freshwater interface as a barrier to the migration of diatom germplasm. In: Mayama S, Idei M, Koizumi I (eds) Proceedings of the 14th International Diatom Symposium. Koeltz, Königstein, pp 1–21

    Google Scholar 

  • Margulis L (ed) (1990) Handbook of Protoctista – the structure, cultivation, habitats, and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants, and fungi: a guide to the algae, ciliates, foraminifera, sporozoa, water molds, slime molds, and the other protoctists. Jones and Bartlett Publishers, Boston, MA, 914 pp

    Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233

    CrossRef  CAS  Google Scholar 

  • Mironova E, Telesh I, Skarlato S (2014) Ciliates in plankton of the Baltic Sea. Protistology 8:81–124

    Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    CrossRef  CAS  Google Scholar 

  • Modig H, van den Bund WJ, Olafsson E (2000) Uptake of phytodetritus by three ostracod species from the Baltic Sea: effects of amphipod disturbance and ostracod density. Marine Ecology Progress Series 202:125–134

    CrossRef  Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1552

    CrossRef  Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737

    CrossRef  Google Scholar 

  • Nascimento FJA, Karlson AML, Elmgren R (2008) Settling blooms of filamentous cyanobacteria as food for meiofauna assemblages. Limnology and Oceanography 53:2636–2643

    CrossRef  Google Scholar 

  • Nie XP, Zie J, Häubner N, Tallmark B, Snoeijs P (2011) Why Baltic herring and sprat are weak conduits for astaxanthin from zooplankton to piscivorous fish. Limnology and Oceanography 56:1155–1167

    CrossRef  CAS  Google Scholar 

  • Nielsen R, Kristiansen A, Mathiesen L, Mathiesen H (1995) Distributional index of the benthic macroalgae of the Baltic Sea Area. Acta Botanica Fennica 155:1–51

    Google Scholar 

  • Nordström M, Högmander J, Laine J, Nummelin J, Laanetu N, Korpimäki E (2003) Effects of feral mink removal on seabirds, waders and passerines on small islands in the Baltic Sea. Biological Conservation 109:359–368

    CrossRef  Google Scholar 

  • Ojaveer H, Jaanus J, MacKenzie BR, Martin G, Olenin S et al (2010) Status of Biodiversity in the Baltic Sea. PLoS ONE 5(9):e12467

    CrossRef  CAS  Google Scholar 

  • Ólafsson E, Elmgren R (1997) Seasonal dynamics of sublittoral meiobenthos in relation to phytoplankton sedimentation in the Baltic Sea. Estuarine and Coastal Shelf Science 45:149–164

    CrossRef  Google Scholar 

  • Olenin S, Leppäkoski E (1999) Non-native animals in the Baltic Sea: alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia 393:233–243

    CrossRef  Google Scholar 

  • Olli K, Ptacnik R, Andersen T, Trikk O, Klais R et al (2014) Against the tide: recent diversity increase enhances resource use in a coastal ecosystem. Limnology and Oceanography 59:267–274

    CrossRef  Google Scholar 

  • Olsson J, Bergström L, Gårdmark A (2012) Abiotic drivers of coastal fish community change during four decades in the Baltic Sea. ICES Journal of Marine Science 69:961–970

    CrossRef  Google Scholar 

  • Östman Ö, Boström MK, Bergström U, Andersson J, Lunneryd SG (2013) Estimating competition between wildlife and humans – a case of cormorants and coastal fisheries in the Baltic Sea. PloS ONE 8(12):e83763

    CrossRef  CAS  Google Scholar 

  • Paavola M, Olenin S, Leppäkoski E (2005) Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuarine and Coastal Shelf Science 64:738–750

    CrossRef  Google Scholar 

  • Paine RT (1995) A conversation on refining the concept of “keystone species”. Conservation Biology 9:962–964

    CrossRef  Google Scholar 

  • Pallo P, Widbom B, Ólafsson E (1998) A quantitative survey of the benthic meiofauna in the Gulf of Riga (eastern Baltic Sea), with special reference to the structure of nematode assemblages. Ophelia 49:117–139

    CrossRef  Google Scholar 

  • Pawlowski J, Audic S, Adl S, Bass D, Belbahri L et al (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biology 10(11):e1001419

    CrossRef  CAS  Google Scholar 

  • Pedrós-Alio C (2012) The rare bacterial biosphere. Annual Review of Marine Science 4:449–466

    CrossRef  Google Scholar 

  • Pettersson A, Lignell P (1999) Astaxanthin deficiency in eggs and fry of Baltic salmon (Salmo salar) with the M74 syndrome. Ambio 28:43–47

    Google Scholar 

  • Pianka ER (1970) On r and K selection. American Naturalist 104:592–597

    CrossRef  Google Scholar 

  • Pickova J, Kiessling A, Pettersson A, Dutta PC (1998) Comparison of fatty acid composition and astaxanthin content in healthy and by M74 affected salmon eggs from three Swedish river stocks. Comparative Biochemistry and Physiology 120B:265–271

    CrossRef  CAS  Google Scholar 

  • Postel L (1995) Zooplankton. In: Rheinheimer G (ed) Meereskunde der Ostsee, 2nd edn. Springer, Berlin, pp 150–160 [in German]

    Google Scholar 

  • Potapova M (2011) Patterns of diatom distribution in relation to salinity. In: Seckback J, Kociolek JP (eds) The diatom world. Springer, Dordrecht, pp 313–332

    CrossRef  Google Scholar 

  • Poulsen NC, Spector I, Spruck TP, Schultz TF, Wetherbee R (1999) Diatom gliding is the result of an actin-myosin motility system. Cell Motility and the Cytoskeleton 44:23–33

    CrossRef  CAS  Google Scholar 

  • Ptacnik R, Olli K, Lehtinen S, Tamminen T, Andersen T (2011) Does plankton diversity peak at intermediate salinities? Comment on Telesh et al. (2011) Marine Ecology Progress Series 432:291–292

    Google Scholar 

  • Ptacnik R, Solimini AG, Andersen T, Tamminen T, Brettum P et al (2008) Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences of the USA 105:5134–5138

    CrossRef  CAS  Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36:34–74 [in German]

    Google Scholar 

  • Remane A (1958) Ökologie des Brackwassers. In: Remane A, Schlieper C (eds) Die Biologie des Brackwassers. Binnengewässer 22:1–216

    Google Scholar 

  • Reusch TBH, Boström C, Stam WT, Olsen JL (1999) An ancient eelgrass clone in the Baltic. Marine Ecology Progress Series 183:301–304

    CrossRef  Google Scholar 

  • Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520

    CrossRef  Google Scholar 

  • Rokicka-Praxmajer J, Radziejewska T (2002) Free-living nematodes of the Pomeranian Bay (Southern Baltic). A preliminary analysis of nematode variability in an area affected by direct river runoff. Acta Scientiorum Polonorum. Series Piscaria 1:85–104

    Google Scholar 

  • Round FE, Basson PW (1997) A new monoraphid genus (Pogoneis) from Bahrain and the transfer of previously described species A. hungarica and A. taeniata to new genera. Diatom Research 12:71–81

    CrossRef  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge 747 pp

    Google Scholar 

  • Round FE, Sims PA (1981) The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations. In: Ross R (ed) Proceedings of the Sixth International Diatom Symposium. Koeltz, Königstein, pp 301–320

    Google Scholar 

  • Russell G (1988) The seaweed flora of a young semi-enclosed sea, the Baltic – salinity as a possible agent of flora divergence. Helgoländer Meeresuntersuchungen 42:243–250

    CrossRef  Google Scholar 

  • Salemaa H, Vuorinen I, Välipakka P (1990) The distribution and abundance of Mysis populations in the Baltic Sea. Annales Zoologici Fennici 27:253–257

    Google Scholar 

  • Schlegel M, Hülsmann N (2007) Protists – a textbook example for a paraphyletic taxon. Organisms, Diversity and Evolution 7:166–172

    CrossRef  Google Scholar 

  • Schönfeld J, Alve E, Geslin E, Jorissen F, Korsun S et al (2012) The FOBIMO (FOraminiferal BIo-MOnitoring) initiative – towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology 94–95:1–13

    CrossRef  Google Scholar 

  • Schönfeld J, Numberger L (2007) Seasonal dynamics and decadal changes of benthic foraminiferal assemblages in the western Baltic (NW Europe). Journal of Micropaleontology 26:47–60

    CrossRef  Google Scholar 

  • Segerstråle SG (1962) The immigration and prehistory of the glacial relicts of Eurasia and North America – survey and discussion of modern views. Internationale Revue der gesamten Hydrobiologie 47:1–25

    CrossRef  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L et al (2007) Fungal biodiversity in aquatic habitats. Biodiversity and Conservation 16:49–67

    CrossRef  Google Scholar 

  • Sheil D, Burslem FRP (2013) Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends in Ecology and Evolution 28:571

    CrossRef  Google Scholar 

  • Simonsen R (1962) Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der Westlichen Ostsee. Internationale Revue der gesamten Hydrobiologie, Systematische Beihefte 1:1–144

    Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    CrossRef  Google Scholar 

  • Skov H, Heinänen S, Žydelis R, Bellebaum J, Bzoma S et al (2011) Waterbird populations and pressures in the Baltic Sea. TemaNord 2011:550. Nordic Council of Ministers, Copenhagen, p 201

    Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32

    CrossRef  CAS  Google Scholar 

  • Snickars M, Weigel B, Bonsdorff E (2015) Impact of eutrophication and climate change on fish and zoobenthos in coastal waters of the Baltic Sea. Marine Biology 162:141–151

    CrossRef  CAS  Google Scholar 

  • Snoeijs P, Mo K (1987) Macrofauna on rocky substrates in the Forsmark Biotest basin, March 1984-March 1985. Swedish Environmental Protection Board, Report 3397:1–55

    Google Scholar 

  • Snoeijs P (1989) Effects of increasing water temperatures and flow rates on epilithic fauna in a cooling-water discharge basin. Journal of Applied Ecology 26:935–956

    CrossRef  Google Scholar 

  • Snoeijs P (1995) Effects of salinity on epiphytic diatom communities on Pylaiella littoralis (Phaeophyceae) in the Baltic Sea. Ecoscience 2:382–394

    CrossRef  Google Scholar 

  • Snoeijs P, Busse S, Potapova M (2002) The importance of diatom cell size in community analysis. Journal of Phycology 38:265–272

    CrossRef  Google Scholar 

  • Snoeijs P, Häubner N (2014) Astaxanthin dynamics in Baltic Sea mesozooplankton communities. Journal of Sea Research 85:131–143

    CrossRef  Google Scholar 

  • Snoeijs P, Potapova M (1998) Ecotypes or endemic species? – a hypothesis on the evolution of Diatoma taxa (Bacillariophyta) in the northern Baltic Sea. Nova Hedwigia 67:303–348

    Google Scholar 

  • Snoeijs P, Vilbaste S, Potapova M, Kasperoviciene J, Balashova J (1993−1998) Intercalibration and distribution of diatom species in the Baltic Sea, Volumes 1-5. Opulus Press, Uppsala, 645 pp

    Google Scholar 

  • Snoeijs P, Wakuru-Murasi L (2004) Symbiosis between diatoms and cyanobacterial colonies. Vie Milieu 54:163–170

    Google Scholar 

  • Snoeijs P, Weckström K (2010) Diatoms and environmental change in large brackish-water ecosystems. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 287–308

    CrossRef  Google Scholar 

  • Stearns SC (1977) Evolution of life-history traits – critique of theory and a review of data. Annual Review of Ecology, Evolution and Systematics 8:145–171

    CrossRef  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford, UK 262 pp

    Google Scholar 

  • Stein EC, Martinez MC, Stiles S, Miller PE, Zakharov EV (2014) Is DNA Barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States? PLoS ONE 9(4):95525

    CrossRef  CAS  Google Scholar 

  • Stern RF, Horak A, Andrew RL, Coffroth MA, Andersen RA et al (2010) Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS ONE 5(11):e13991

    CrossRef  CAS  Google Scholar 

  • Stock A, Jürgens K, Bunge J, Stoeck Y (2009) Protistan diversity in suboxic and anoxic waters of the Gotland deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquatic Microbial Ecology 55:267–284

    CrossRef  Google Scholar 

  • Stoecker DK, Michaels AE (1991) Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Marine Biology 108:441–447

    CrossRef  CAS  Google Scholar 

  • Sundblad G, Bergström U (2014) Shoreline development and degradation of coastal fish reproduction habitats. AMBIO 43:1020–1028

    CrossRef  Google Scholar 

  • Sundblad G, Bergström U, Sandström A, Eklov P (2013) Nursery habitat availability limits adult stock sizes of predatory coastal fish. ICES Journal of Marine Science 71:672–680

    CrossRef  Google Scholar 

  • Sundqvist L, Härkönen T, Svensson CJ, Harding KC (2012) Linking climate trends to population dynamics in the Baltic ringed seal – impacts of historical and future winter temperatures. Ambio 41:865–872

    CrossRef  Google Scholar 

  • Svensson F, Norberg J, Snoeijs P (2014) Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change. PLoS ONE 9(10):e109993

    CrossRef  CAS  Google Scholar 

  • Sylvander P (2013) Thiamine dynamics in the pelagic food web of the Baltic Sea. Stockholm University, 35 pp [PhD Thesis]

    Google Scholar 

  • Szulwiński M, Radziejewska T, Drgas A (2001) Trophic structure of free-living nematode assemblages along a southern Baltic transect. Folia Universitatis Agriculturae Stetinensis 28:141–150

    Google Scholar 

  • Tatarenkov A, Bergström L, Jonsson RB, Serrão EA, Kautsky L et al (2005) Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Molecular Ecology 14:647–651

    CrossRef  CAS  Google Scholar 

  • Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources 12:377–388

    CrossRef  CAS  Google Scholar 

  • Tedengren M, Kautsky N (1986) Comparative study of the physiology and its probable effect on size in blue mussels (Mytilus edulis L.) from the North Sea and the northern Baltic Proper. Ophelia 25:147–155

    CrossRef  Google Scholar 

  • Telesh I, Postel L, Heerkloss R, Mironova E, Skarlato S (2009) Zooplankton of the open Baltic Sea: extended atlas. Leibniz Institute for Baltic Sea Research. Marine Science Reports 76:1–290

    Google Scholar 

  • Telesh I, Schubert H, Skarlato S (2011a) Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Marine Ecology Progress Series 421:1–11

    CrossRef  Google Scholar 

  • Telesh I, Schubert H, Skarlato S (2011b) Protistan diversity does peak in the horohalinicum of the Baltic Sea: reply to Ptacnik et al. (2011). Marine Ecology Progress Series 432:293–297

    Google Scholar 

  • Törnroos A, Bonsdorff E (2012) Developing the multitrait concept for functional diversity: lessons from a system rich in functions but poor in species. Ecological Applications 22:2221–2236

    CrossRef  Google Scholar 

  • Törnroos A, Bonsdorff E, Bremner J, Blomqvist M, Josefsson AB et al (2015) Marine benthic ecological functioning over decreasing taxonomic richness. Journal of Sea Research 98:49–56

    CrossRef  Google Scholar 

  • Tuomisto H (2010a) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    CrossRef  Google Scholar 

  • Tuomisto H (2010b) A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:23–45

    CrossRef  Google Scholar 

  • Tuomisto H (2010c) A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 4:853–860

    CrossRef  Google Scholar 

  • Ulanova A, Busse S, Snoeijs P (2009) Coastal diatom-environment relationships in the brackish Baltic Sea. Journal of Phycology 45:54–68

    CrossRef  Google Scholar 

  • Urban-Malinga B, Hedtkamp SIC, van Beusekom JEE, Wiktor J, Węsławski JM (2006) Comparison of nematode communities in Baltic and North Sea sublittoral, permeable sands – diversity and environmental control. Estuarine, Coastal and Shelf Science 70:224–238

    CrossRef  Google Scholar 

  • Ursi S, Pedersén M, Plastino E, Snoeijs P (2003) Intraspecific variation of photosynthesis, respiration and photoprotective carotenoids in Gracilaria birdiae (Gracilariales: Rhodophyta). Marine Biology 142:997–1007

    CrossRef  CAS  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge 623 pp

    Google Scholar 

  • Vouri KAM, Nikinmaa M (2007) M74 syndrome in Baltic salmon and the possible role of oxidative stresses in its development: present knowledge and perspective for future studies. Ambio 36:168–172

    CrossRef  Google Scholar 

  • Waltho J, Coulson J (2015) The common eider. T and A D Poyser, London, 352 pp

    Google Scholar 

  • Wänstrand I, Snoeijs P (2005) Phytoplankton community dynamics assessed by ships-of-opportunity sampling in the northern Baltic Sea: a comparison of HPLC pigment analysis and cell counts. Estuarine, Coastal and Shelf Science 66:135–146

    CrossRef  Google Scholar 

  • Ward RD, Hanner R, Hebert PD (2009) The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology 74:329–356

    CrossRef  CAS  Google Scholar 

  • Wendker S (1990) Untersuchungen zur subfossilen und rezenten Diatomeenflora des Schlei-Ästuars (Ostsee). Bibliotheca Diatomologica 20:1–268

    Google Scholar 

  • Whitfield AK, Elliott M, Basset A, Blaber SJM, West RJ (2012) Paradigms in estuarine ecology – a review of the Remane diagram with a suggested revised model for estuaries. Estuarine and Coast Shelf Science 97:78–90

    CrossRef  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279–338

    CrossRef  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    CrossRef  Google Scholar 

  • Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernahrungsweise und vorkommen bei freilebenden marinen Nematoden. Arkiv för Zoologi 2:439–484 [in German]

    Google Scholar 

  • Wilkinson DM (1999) The disturbing history of intermediate disturbance. Oikos 84:145–147

    CrossRef  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    CrossRef  CAS  Google Scholar 

  • Wulff F, Sokolov A, Savchuk (2013) Nest – a decision support system for management of the Baltic Sea, a user manual. Baltic Nest Institute, Stockholm University Baltic Sea Centre, Technical Report 10:1–70

    Google Scholar 

  • Zander CD, Reimer LW (2002) Parasitism at the ecosystem level in the Baltic Sea. Parasitology 124:S119–S135

    CrossRef  Google Scholar 

  • Zettler ML, Karlsson A, Kontula T, Gruszka P, Laine AO et al (2014) Biodiversity gradient in the Baltic Sea: a comprehensive inventory of macrozoobenthos data. Helgoland Marine Research 68:49–57

    CrossRef  Google Scholar 

  • Zettler ML, Schiedek D, Bobertz B (2007) Benthic biodiversity indices versus salinity gradient in the southern Baltic Sea. Marine Pollution Bulletin 55:258–270

    CrossRef  CAS  Google Scholar 

  • Zweifel UL, Laamanen M (eds) (2009) Biodiversity in the Baltic Sea – an integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea. Baltic Sea Environment Proceedings 116B:1–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Snoeijs-Leijonmalm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Snoeijs-Leijonmalm, P. (2017). Patterns of biodiversity. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_4

Download citation