Skip to main content

Biological indicators

  • Chapter
  • First Online:
Book cover Biological Oceanography of the Baltic Sea

Abstract

  1. 1.

    Changes in living conditions caused by natural variability or anthropogenic activities elicit distinct responses of species, populations and communities. Bioindication is the recording of such responses and the entity measured is called a “bioindicator”.

  2. 2.

    A bioindicator can be any relevant component or measure that can be used to estimate the environmental status based on the performance of all types of organisms (prokaryotes, protists, macroalgae, vascular plants, invertebrates, fish, mammals), including bulk measurements such as the chlorophyll a concentration in the seawater or the lower depth limit of macrophytes.

  3. 3.

    To be able to conclude if environmental change has taken place based on bioindication, it is essential to have knowledge of the specific ecological requirements of the organisms with respect to their habitats.

  4. 4.

    Bioindication using individuals or species includes e.g. behavioural adaptations, modifications of organ and cell structures and changes in population dynamics.

  5. 5.

    Bioindication by recording dramatic increases or decreases in the proportion and/or density of species in a community provides a conspicuous sign of environmental change, especially when this includes the extinction of species.

  6. 6.

    Strong decreases and extinctions of species in a community coupled to immigration of non-indigenous species may signify a shift in community composition that has a bearing on the functioning of the entire ecosystem.

  7. 7.

    Bioindication is a major tool used in the implementations of the EU environmental legislation : the Habitats Directive (HD), the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bäcklin B, Eriksson ML, Olovsson M (2003) Histology of uterine leiomyoma and occurrence in relation to reproductive activity in the Baltic grey seal (Halichoerus grypus). Veterinary Pathology 40:175–180

    Article  Google Scholar 

  • Beineke A, Siebert U, Baumgärtner W (2010) Immunology of whales and dolphins. Veterinary Immunology and Immunopathology 133:81–94

    Article  CAS  Google Scholar 

  • Borja A, Miles A, Occipinti-Ambrogi A, Berg T (2009) Current status of macroinvertebrate methods used for assessing the quality of European marine waters: implementing the Water Framework Directive. Hydrobiologia 633:181–196

    Article  Google Scholar 

  • Boyer JN, Kelble CR, Ortner PB, Rudnick DT (2009) Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecological Indicators 9:56–67

    Article  Google Scholar 

  • Darr A, Gogina M, Zettler ML (2014) Functional changes in benthic communities along a salinity gradient – a western Baltic case study. Journal of Sea Research 85:315–324

    Article  Google Scholar 

  • Diekmann R, Möllmann C (eds) (2010) Integrated ecosystem assessments of seven Baltic Sea areas covering the last three decades. ICES Cooperative Research Report 3021:90

    Google Scholar 

  • EC (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L 206:7–50

    Google Scholar 

  • EU (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327:1–72

    Google Scholar 

  • EU (2005) Common implementation strategy for the Water Framework Directive (2000/60/EC). Overall approach to the classification of ecological status and ecological potential, produced by Working Group 2A, European Communities, Luxembourg. WFD CIS Guidance Document 13:1–47

    Google Scholar 

  • EU (2006) Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Official Journal of the European Union L 64:37–51

    Google Scholar 

  • EU (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union L 164:19–40

    Google Scholar 

  • Falkowski PG, Wilson C (1992) Phytoplankton productivity in the North Pacific Ocean since 1900 and implications for absorption of anthropogenic CO2. Nature 358:741–743

    Article  Google Scholar 

  • Falkowski PG, Wilson C (1993) Phytoplankton productivity? Nature 362:796

    Article  Google Scholar 

  • Finni T, Kononen K, Olsonen R, Wallström K (2001) The history of cyanobacterial blooms in the Baltic Sea. AMBIO 30:172–178

    Google Scholar 

  • Fleischer D, Zettler ML (2009) An adjustment of benthic ecological quality assessment to effects of salinity. Marine Pollution Bulletin 58:351–357

    Article  CAS  Google Scholar 

  • Fleming V, Kaitala S (2006) Phytoplankton spring bloom intensity index for the Baltic Sea estimated for the years 1992 to 2004. Hydrobiologia 554:57–65

    Article  Google Scholar 

  • Fürhaupter K, Wilken H, Meyer T (2008) WRRL-Makrophytenmonitoring in Schleswig-Holstein, Teil B, Makrophyten, Äußere Küstengewässer. Untersuchungen im Auftrag des Landesamtes für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Kiel, 42 pp [in German]

    Google Scholar 

  • Gercken J, Förlin L, Andersson J (2006) Developmental disorders in larvae of eelpout (Zoarces viviparus) from German and Swedish Baltic coastal waters. Marine Pollution Bulletin 53:497–507

    Article  CAS  Google Scholar 

  • Gercken J, Sordyl H (2002) Intersex in feral marine and freshwater fish from northeastern Germany. Marine Environmental Research 54:651–655

    Article  CAS  Google Scholar 

  • Gogina M, Glockzin M, Zettler ML (2010) Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 1. Causal analysis. Journal of Marine Systems 79:112–123

    Article  Google Scholar 

  • Greve TM, Krause-Jensen D (2005) Predictive modelling of eelgrass (Zostera marina) depth limits. Marine Biology 147:803–812

    Article  Google Scholar 

  • Hansson M, Håkansson B (2007) The Baltic Algae Watch System – a remote sensing application for monitoring cyanobacterial blooms in the Baltic Sea. Journal of Applied Remote Sensing 1(1):011507, 10 pp

    Google Scholar 

  • Hedman JE, Rüdel H, Gercken J, Bergek S, Strand J et al (2011) Eelpout (Zoarces viviparus) in marine environmental monitoring. Marine Pollution Bulletin 62:2015–2029

    Article  CAS  Google Scholar 

  • Heink U, Kowarik I (2010) What are indicators? on the definition of indicators in ecology and environmental planning. Ecological Indicators 10:584–593

    Article  Google Scholar 

  • HELCOM (2009) Eutrophication in the Baltic Sea – an integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region. Baltic Sea Environment Proceedings 115B:1–148

    Google Scholar 

  • HELCOM (2010) Hazardous substances in the Baltic Sea – an integrated thematic assessment of hazardous substances in the Baltic Sea. Baltic Sea Environment Proceedings 120B:1–116

    Google Scholar 

  • HELCOM (2012a) Development of a set of core indicators: interim report of the HELCOM CORESET project. Part B: Descriptions of the indicators. Baltic Sea Environment Proceedings 129B:1–219

    Google Scholar 

  • HELCOM (2012b) Indicator based assessment of coastal fish community status in the Baltic Sea 2005–2009. Baltic Sea Environment Proceedings 131:1–88

    Google Scholar 

  • HELCOM (2015a) Strategy for future HELCOM assessments of inputs of nutrients and selected hazardous substances. Baltic Marine Environment Protection Commission, 4 pp [http://www.helcom.fi]

  • HELCOM (2015b) BALSAM Project 2013–2015: recommendations and guidelines for benthic habitat monitoring with method descriptions for two methods for monitoring of biotope and habitat extent. Baltic Marine Environment Protection Commission, 62 pp [http://www.helcom.fi]

  • Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2,000 km salinity gradient of the Baltic Sea. The ISME Journal 5:1571–1579

    Article  CAS  Google Scholar 

  • Holmfeldt K, Dziallas C, Titelman J, Pohlmann K, Grossart HP et al (2009) Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea. Environmental Microbiology 11:2042–2054

    Article  CAS  Google Scholar 

  • Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries 6:21–27

    Article  Google Scholar 

  • Kautsky N, Kautsky H, Kautsky U, Wærn M (1986) Decreased depth penetration of Fucus vesiculosus L. since the 1940s indicates eutrophication of the Baltic Sea. Marine Ecology Progress Series 28:1–8

    Article  Google Scholar 

  • Kotta J, Paalme T, Kersen P, Martin G, Herkul K et al (2008) Density-dependent growth of the red algae Furcellaria lumbricalis and Coccotylus truncatus in the West Estonian Archipelago Sea, northern Baltic Sea. Oceanologia 50:577–585

    Google Scholar 

  • Labrenz M, Sintes E, Toetzke F, Zumsteg A, Herndl GJ et al (2010) Relevance of a crenarchaeotal subcluster related to Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea. The ISME Journal 4:1496–1508

    Article  Google Scholar 

  • Marbà N, Krause-Jensen D, Alcoverro T, Birk S, Pedersen A et al (2013) Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia 704:265–278

    Article  Google Scholar 

  • McCarty LS, Power M, Munkittrick KR (2002) Bioindicators versus biomarkers in ecological risk assessment. Human and Ecological Risk Assessment: An International Journal 8:159–164

    Article  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Article  Google Scholar 

  • OECD (2003) Core environmental indicators – development, measurement and use. Organisation for Economic Co-Operation Development (OECD), Paris 37 pp

    Google Scholar 

  • OSPAR (1998) OSPAR Agreement 1998-18 Annex 1. OSPAR Strategy to Combat Eutrophication. [http://www.bmu.de/files/pdfs/allgemein/application/pdf/ospar_strategy3_eut.pdf]

  • Péru N, Dolédec S (2010) From compositional to functional biodiversity metrics in bioassessment: a case study using stream macroinvertebrate communities. Ecological Indicators 10:1025–1036

    Article  Google Scholar 

  • Pinhassi J, Winding A, Binnerup SJ, Zweifel UL, Riemann B et al (2003) Spatial variability in bacterioplankton community composition at the Skagerrak-Kattegat front. Marine Ecology Progress Series 255:1–13

    Article  CAS  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  Google Scholar 

  • Rosenberg R, Blomqvist M, Nilsson HC, Cederwall H, Dimming A (2004) Marine quality assessment by use of benthic species-abundance distributions: a proposed new protocol within the European Union Water Framework Directive. Marine Pollution Bulletin 49:728–739

    Article  CAS  Google Scholar 

  • Sagert S, Krause-Jensen D, Henriksen P, Rieling T, Schubert H (2005) Integrated ecological assessment of Danish Baltic Sea coastal areas by means of phytoplankton and macrophytobenthos. Estuarine, Coastal and Shelf Science 63:109–118

    Article  CAS  Google Scholar 

  • Schladot JD, Backhaus F, Ostapczuk P, Emons H (1997) Eelpout (Zoarces viviparus) as a marine bioindicator. Chemosphere 34:2133–2142

    Article  CAS  Google Scholar 

  • Schubert H, Forster RM (1997) Sources of variability in the factors used for modelling primary productivity in eutrophic waters. Hydrobiologia 349:75–85

    Article  CAS  Google Scholar 

  • Selig U, Eggert A, Schories D, Schubert M, Blümel C et al (2007) Ecological classification of macroalgae and angiosperm communities of inner coastal waters in the southern Baltic Sea. Ecological Indicators 7:665–678

    Google Scholar 

  • Siebert U, Wünschmann A, Weiss R, Frank H, Benke H et al (2001) Post-mortem findings in harbour porpoises (Phocoena phocoena) from the German North and Baltic Seas. Journal of Comparative Pathology 124:102–114

    Article  CAS  Google Scholar 

  • Thiel R, Winkler H, Urho L (1996) Zur Veränderung der Fischfauna. In: Lozan JL, Lampe W, Matthäus W, Rachor E, Rumohr H, von Westernhagen H (eds) Warnsignale aus der Ostsee: wissenschaftliche Fakten. Parey Buchverlag Berlin, pp 181–188 [in German]

    Google Scholar 

  • Torn K, Krause-Jensen D, Martin G (2006) Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea. Aquatic Botany 84:53–62

    Article  Google Scholar 

  • Van Hoey G, Borja A, Birchenough S, Buhl-Mortensen L, Degraer S et al (2010) The use of benthic indicators in Europe: from the Water Framework Directive to the Marine Strategy Framework Directive. Marine Pollution Bulletin 60:2187–2196

    Article  Google Scholar 

  • Zettler ML, Proffitt CE, Darr A, Degraer S, Devriese L et al (2013) On the myths of indicater species: issues and further consideration in the use of static concepts for ecological applications. PLoS ONE 8(10):e78219

    Article  CAS  Google Scholar 

  • Zettler ML, Schiedek D, Bobertz B (2007) Benthic biodiversity indices versus salinity gradient in the southern Baltic Sea. Marine Pollution Bulletin 55:258–270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Zettler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zettler, M.L. et al. (2017). Biological indicators. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_14

Download citation

Publish with us

Policies and ethics