Skip to main content

Sandy coasts

  • Chapter
  • First Online:
Book cover Biological Oceanography of the Baltic Sea

Abstract

  1. 1.

    Sandy coasts, including the epilittoral part of sandy beaches and the shallow sandy sublittoral, are particularly extensive in the southern and southeastern part of the Baltic Sea.

  2. 2.

    In the Baltic Sea ecosystem, sandy coasts function as biocatalytic filters by decomposing organic matter (including detritus) most of which originates directly or indirectly (e.g. via waterbirds) from the sea.

  3. 3.

    Sandy coasts are unstable, erodable environments which change in time and space due to e.g. erosion in winter and deposition of sand on the beaches in summer, and to the constant shifting of the substrate by winds and currents.

  4. 4.

    The sandy epilittoral and shallow sublittoral habitats support a variety of life forms, from microbes to birds, and are the space in which diverse processes involved in energy flow and matter cycling operate at different temporal and spatial scales.

  5. 5.

    The sandy coast food webs are partly based on the direct input of solar energy and nutrients used by primary producers (phytoplankton, microphytobenthos, macrophytes) whose production is subsequently utilised by invertebrates (meiobenthos, macrozoobenthos), fish and birds.

  6. 6.

    Another part of the sandy coast food webs is based on the input of organic material in the form of detritus, a source of energy for microbial communities consisting of bacteria, fungi, yeasts and actinomycetes as well as of heterotrophic protists living attached to sand grains and in the interstices.

  7. 7.

    Birds collect invertebrate prey from the sand on the beach or from the shallow sublittoral and contribute to the organic matter pool of the sandy habitat.

  8. 8.

    The sandy coasts of the Baltic Sea experience heavy anthropogenic pressure which primarily involves tourism and recreation , but also effects of eutrophication, establishment of non-indigenous species , sand extraction and dredging , fishing, infrastructure and shore defence constructions .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnio K, Bonsdorff E (1993) Seasonal variation in abundance and diet of the sand goby Pomatoschistus minutus (Pallas) in a northern Baltic archipelago. Ophelia 37:19–30

    Google Scholar 

  • Aarnio K, Sandberg E, Bonsdorff E (1991) Benthic predation on shallow-water macro- and meiofauna in the Baltic Sea: an experimental comparison between Pomatoschistus minutus (Pisces) and Saduria entomon (Crustacea). Annales Zoologici Fennici 28:41–48

    Google Scholar 

  • Appelgren K, Mattila J (2005) Variation in vegetation communities in shallow bays of the northern Baltic Sea. Aquatic Botany 83:1–13

    Article  Google Scholar 

  • Berglund J, Mattila J, Rönnberg O, Heikkilä J, Bonsdorff E (2003) Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays. Estuarine, Coastal and Shelf Science 56:1167–1175

    Article  Google Scholar 

  • Bergström U, Englund G, Bonsdorff E (2002) Small-scale spatial structure of Baltic Sea zoobenthos – inferring processes from patterns. Journal of Experimental Marine Biology and Ecology 282:123–136

    Article  Google Scholar 

  • Blank M, Laine AO, Jürss K, Bastrop R (2008) Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species’ current distribution in the Baltic Sea. Helgoland Marine Research 62:129–141

    Article  Google Scholar 

  • Blew J, Günther K, Kieckbusch JJ, Nehls HW (2008) Numbers of wintering waders in non-estuarine habitats along the North Sea and Baltic Sea coasts of Germany in winter 1997/98. In: Burton NHK, Rehfisch MM, Stroud DA, Spray CJ (eds) The European non-estuarine coastal waterbird survey. International Wader Study Group, Thetford, UK, International Wader Studies 18:31–35

    Google Scholar 

  • Bonsdorff E (1983) Recovery potential of macrozoobenthos from dredging in shallow brackish waters. In: Cabioch L, Glémarec M, Samain JF (eds) Fluctuation and succession in marine ecosystems. Proceedings of the 17th European Symposium on Marine Biology. Gauthier-Villars, Montrouge, pp 27–32

    Google Scholar 

  • Bonsdorff E (1992) Drifting algae and zoobenthos – effects on settling and community structure. Netherlands Journal of Sea Research 30:57–62

    Article  Google Scholar 

  • Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. Journal of Experimental Marine Biology and Ecology 330:383–392

    Article  Google Scholar 

  • Bonsdorff E, Blomqvist EM (1993) Biotic couplings on shallow water soft bottoms – examples from the northern Baltic Sea. Oceanography and Marine Biology – An Annual Review 31:153–176

    Google Scholar 

  • Bonsdorff E, Norkko A, Sandberg E (1995) Structuring zoobenthos: the importance of predation, cropping and physical disturbance. Journal of Experimental Marine Biology and Ecology 192:125–144

    Article  Google Scholar 

  • Bonsdorff E, Pearson TH (1999) Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Australian Journal of Ecology 24:312–326

    Article  Google Scholar 

  • Boström C, Baden S, Bockelmann AC, Dromph K, Fredriksen S et al (2014) Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 24:410–434

    Article  Google Scholar 

  • Brey T (1991) Interactions in soft bottom benthic communities: quantitative aspects of behaviour in the surface deposit feeders Pygospio elegans (Polychaeta) and Macoma balthica (Bivalvia). Helgoländer Meeresuntersuchungen 45:301–316

    Article  Google Scholar 

  • Conners ME, Hollowed AB, Brown E (2002) Retrospective analysis of Bering Sea bottom trawl surveys: regime shift and ecosystem reorganization. Progress in Oceanography 55:209–222

    Article  Google Scholar 

  • Daleo P, Iribarne O (2009) Beyond competition: the stress-gradient hypothesis tested in plant-herbivore interactions. Ecology 90:2368–2374

    Article  Google Scholar 

  • Defeo O, McLachlan A, Schoeman DS, Schlacher TA, Dugan J et al (2009) Threats to sandy beach ecosystems: a review. Estuarine, Coastal and Shelf Science 81:1–12

    Article  Google Scholar 

  • Dierschke V, Kube J, Probst S, Brenning U (1999) Feeding ecology of dunlins Calidris alpina staying in the southern Baltic Sea, 1. Habitat use and food selection. Journal of Sea Research 42:49–64

    Article  Google Scholar 

  • Dietrich D, Arndt H (2000) Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Marine Biology 136:309–322

    Article  Google Scholar 

  • Doody JP (2004) “Coastal squeeze” – an historical perspective. Journal of Coastal Conservation 10:129–138

    Article  Google Scholar 

  • Drzycimski I (1974) The Harpacticoida (Copepoda) of the Baltic coastal waters. Fragmenta Faunistica 20:61–73

    Article  Google Scholar 

  • Evans S (1984) Energy budgets and predation impact of dominant epibenthic carnivores on a shallow soft bottom community at the Swedish west coast. Estuarine, Coastal and Shelf Science 18:651–672

    Article  Google Scholar 

  • Fenchel T (1969) The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1–182

    Article  Google Scholar 

  • Gamenick I, Jahn A, Vopel K, Giere O (1996) Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. Marine Ecology Progress Series 144:73–85

    Article  CAS  Google Scholar 

  • Gerlach SA (1953) Die Nematodenfauna der Uferzonen und des Küstengrundwassers am finnischen Meerbusen. Acta Zoologica Fennica 73:1–32 [in German]

    Google Scholar 

  • Gheskiere T, Vincx M, Węsławski JM, Scapini F, Degraer S (2005) Meiofauna as descriptor of tourism-induced changes at sandy beaches. Marine Environmental Research 60:245–265

    Article  CAS  Google Scholar 

  • Giere O (2009) Meiobenthology – the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin 527 pp

    Google Scholar 

  • Grunewald R (2006) Assessment of damages from recreational activities on coastal dunes of the southern Baltic Sea. Journal of Coastal Research 22:1145–1157

    Article  Google Scholar 

  • Gruszka P (1999) The river Odra estuary as a gateway for alien species immigration to the Baltic Sea basin. Acta Hydrochimica et Hydrobiologica 27:374–382

    Article  CAS  Google Scholar 

  • Grzelak K, Kuklinski P (2010) Benthic assemblages associated with rocks in a brackish environment of the southern Baltic Sea. Journal of the Marine Biological Association of the United Kingdom 90:115–124

    Article  Google Scholar 

  • Haque AM, Szymelfenig M, Węsławski JM (1997) Spatial and seasonal changes in the sandy littoral zoobenthos of the Gulf of Gdańsk. Oceanologia 39:299–324

    Google Scholar 

  • Hart MW, Scheibling RE (1988) Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Marine Biology 99:167–176

    Article  Google Scholar 

  • HELCOM (2014) Checklist of Baltic Sea macro-species. Baltic Sea Environment Proceedings 130:1–203

    Google Scholar 

  • Herkül K, Kotta J (2009) Effects of eelgrass (Zostera marina) canopy removal and sediment addition on sediment characteristics and benthic communities in the northern Baltic Sea. Marine Ecology 30(Supplement 1):74–82

    Article  Google Scholar 

  • Herkül K, Kotta J, Pärnoja M (2011) Effect of physical disturbance on the soft sediment benthic macrophyte and invertebrate community in the northern Baltic Sea. Boreal Environment Research 16 (Supplement A):209–219

    Google Scholar 

  • Hewitt E, Thrush SF (2009) Reconciling the influence of global climate phenomena on macrofaunal temporal dynamics at a variety of spatial scales. Global Change Biology 15:1911–1929

    Article  Google Scholar 

  • Heyl K, Woelfel J, Schumann R, Karsten U (2010) Microbial mats from wind flats on the southern Baltic Sea. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Berlin, pp 301–347

    Chapter  Google Scholar 

  • Jansson BO (1967) The availability of oxygen for the interstitial fauna of sandy beaches. Journal of Experimental Marine Biology and Ecology 1:123–143

    Article  Google Scholar 

  • Jędrzejczak MF (2002a) Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part I. Driftline effects of fragmented detritivory, leaching and decay rates. Oceanologia 44:273–286

    Google Scholar 

  • Jędrzejczak MF (2002b) Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part II. Driftline effects of succession changes and colonisation of beach fauna. Oceanologia 44:367–387

    Google Scholar 

  • Jędrzejczak MF (2004) The modern tourist’s perception of the beach: is the sandy beach a place of conflict between tourism and biodiversity? In: Schernewski G, Löser N (eds) Managing the Baltic Sea. Coastline Reports 2:109–119

    Google Scholar 

  • Jończyk E, Radziejewska T (1984) Temporal changes in sand meiofauna of a southern Baltic beach. Limnologica (Berlin) 15:421–423

    Google Scholar 

  • Kaczorowska E, Lewańczyk A, Suchańska K (2009) Remarks on root flies (Diptera: Anthomyiidae) from sandy and marshy habitats of the Polish coast. Dipteron 25:20–26

    Google Scholar 

  • Kenny AJ, Cato I, Desprez M, Fader G, Schuttenhelm RTE, Side J (2003) An overview of seabed-mapping techniques in the context of marine habitat classification. ICES Journal of Marine Science 60:411–418

    Article  Google Scholar 

  • Koehler H, Munderloh E, Hofmann S (1995) Soil microarthropods (Acari, Collembola) from beach and dune: characteristics and ecosystem context. Journal of Coastal Conservation 1:77–86

    Article  Google Scholar 

  • Köhn J (1992) Mysidacea of the Baltic – state of the art. In: Köhn J, Jones MB, Moffat A (eds) Taxonomy, biology and ecology of (Baltic) mysids (Mysidacea: Crustacea). Rostock University Press, Rostock, pp 5–23

    Google Scholar 

  • Kolicka M, Kisielewski J, Kotwicki L, Zawierucha K, Grzelak K (2014) Checklist of Gastrotricha of the Polish Baltic Sea with the first reports of Heterolepidoderma joermungandri Kanneby, 2011 and Turbanella hyalina (Schulze, 1853). Zootaxa 3869:101–130

    Article  Google Scholar 

  • Kononen S (2000) Spiders (Araneae) on sandy islands in the southwestern archipelago of Finland. Ekológia (Bratislava) 19(Supplement 4):79–85

    Google Scholar 

  • Kotta I, Kotta J, Herkül K (2007a) Seasonal changes in the population structure and life cycle of Neomysis integer in Pärnu Bay, northeastern Baltic Sea. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 56:312–325

    Google Scholar 

  • Kotta J, Aps R, Herkül K (2008) Predicting ecological resilience of marine benthic communities facing a high risk of oil spills. In: Brebbia CA (ed) Environmental problems in coastal regions VII. WITPress, UK, pp 101–110

    Chapter  Google Scholar 

  • Kotta J, Herkül K, Kotta I, Orav-Kotta H, Aps R (2009) Response of benthic invertebrate communities to the large-scale dredging of Muuga Port. Estonian Journal of Ecology 58:286–296

    Article  Google Scholar 

  • Kotta J, Martin G, Aps R (2007b) Sensitivity of benthic vegetation and invertebrate functional guilds to oil spills and its use in oil contingency management related negotiation processes. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 56:255–269

    Google Scholar 

  • Kotta J, Möller T (2009) Important scales of distribution patterns of benthic species in the Gretagrund area, the central Gulf of Riga. Estonian Journal of Ecology 58:259–269

    Article  Google Scholar 

  • Kotta J, Ojaveer H, Puntila R, Nurkse K (2016) Shipping and natural environmental conditions determine the distribution of the invasive non-indigenous round goby Neogobius melanostomus in a regional sea. Estuarine, Coastal and Shelf Science 169:15–24

    Article  Google Scholar 

  • Kotta J, Orav H, Sandberg-Kilpi E (2001) Ecological consequence of the introduction of the polychaete Marenzelleria viridis into a shallow water biotope of the northern Baltic Sea. Journal of Sea Research 46:273–280

    Article  Google Scholar 

  • Kotta J, Paalme T, Martin G, Mäkinen A (2000) Major changes in macroalgae community composition affect the food and habitat preference of Idotea balthica. International Review of Hydrobiology 85:697–705

    Article  Google Scholar 

  • Kotwicki L (1997) Macrozoobenthos of the sandy littoral zone of the Gulf of Gdańsk. Oceanologia 39:447–460

    Google Scholar 

  • Kotwicki L, Szymelfenig M, De Troch M, Urban-Malinga B, Węsławski JM (2005a) Latitudinal biodiversity patterns of meiofauna from sandy littoral beaches. Biodiversity and Conservation 14:461–474

    Article  Google Scholar 

  • Kotwicki L, Węsławski JM, Raczyńska A, Kupiec A (2005b) Deposition of large organic particles (macrodetritus) in a sandy beach system (Puck Bay, Baltic Sea). Oceanologia 47:181–199

    Google Scholar 

  • Kotwicki L, Węsławski JM, Szałtynis A, Stasiak A, Kupiec A (2005c) Fine organic particles in a sandy beach system (Puck Bay, Baltic Sea). Oceanologia 47:165–180

    Google Scholar 

  • Kruk-Dowgiałło L, Szaniawska A (2008) Gulf of Gdańsk and Puck Bay. In: Schiewer U (ed) Ecology of Baltic coastal waters. Springer, Berlin, Ecological Studies 197:139-165

    Google Scholar 

  • Kube J (1996) The ecology of macrozoobenthos and sea ducks in the Pomeranian Bay. Meereswissenschaftliche Berichte 18:1–128

    Google Scholar 

  • Lauringson V, Kotta J (2006) Influence of the thin drift algal mats on the distribution of macrozoobenthos in Kõiguste Bay, NE Baltic Sea. Hydrobiologia 554:97–105

    Article  Google Scholar 

  • Lokko K (2014) Seasonal and spatial variability of zoopsammon communities in relation to environmental parameters. Dissertationes Biologicae Universitatis Tartuensis 263:1–129 [PhD Thesis]

    Google Scholar 

  • Lokko K, Kotta J, Virro T (2014) Seasonal trends in horizontal and vertical patterns of zoopsammon in the brackish Baltic Sea in relation to key environmental variables. Proceedings of the Biological Society of Washington 127:58–77

    Article  Google Scholar 

  • Lund-Hansen LC, Laimo M, Mauritsen K, Lam NN, Hai DH (2002) Effects of benthic diatoms, fluff layer, and sediment conditions on critical shear stress in a non-tidal coastal environment. Journal of the Marine Biological Association of the United Kingdom 82:929–936

    Article  Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84

    Article  Google Scholar 

  • Malm T, Råberg S, Fell S, Carlsson P (2004) Effects of beach cast cleaning on beach quality, microbial food web, and littoral macrofaunal biodiversity. Estuarine, Coastal and Shelf Science 60:339–347

    Article  CAS  Google Scholar 

  • Masłowski J (2010) Makrofauna denna Zatoki Pomorskiej w latach 1976–2005. Wydawnictwo Adam Marszałek, Toruń, 122 pp [in Polish]

    Google Scholar 

  • McLachlan A, Brown AC (2006) The ecology of sandy shores. Elsevier, Amsterdam 392 pp

    Google Scholar 

  • Meier MHE (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Climate Dynamics 27:39–68

    Article  Google Scholar 

  • Meyer-Reil LA, Dawson R, Liebezeit G, Tiedge H (1978) Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying water. Marine Biology 48:161–171

    Article  CAS  Google Scholar 

  • Meyer-Reil LA, Faubel A (1980) Uptake of organic matter by meiofauna organisms and interrelationships with bacteria. Marine Ecology Progress Series 3:251–256

    Article  Google Scholar 

  • Middelboe AL, Sand-Jensen K, Krause-Jensen D (2003) Spatial and interannual variations with depth in eelgrass populations. Journal of Experimental Marine Biology and Ecology 291:1–15

    Article  Google Scholar 

  • Möllmann C, Müller-Karulis B, Diekmann R, Flinkman J, Gådmark A (2007) Ecosystem regime state in the Baltic Proper, Gulf of Riga, Gulf of Finland, and the Bothnian Sea. HELCOM Indicator Fact Sheets 2007. [http://www.helcom.fi]

  • Mudryk Z, Podgórska B (2005) Generic composition and respiratory activity of heterotrophic bacteria of marine sandy beach (southern Baltic Sea). Polish Journal of Ecology 53:97–103

    Google Scholar 

  • Mudryk Z, Podgórska B (2007) Culturable microorganisms in sandy beaches in the South Baltic Sea. Polish Journal of Ecology 55:221–231

    Google Scholar 

  • Norkko A, Bonsdorff E (1996) Population responses of coastal zoobenthos to stress induced by drifting algal mats. Marine Ecology Progress Series 140:141–151

    Article  Google Scholar 

  • Ojaveer H, Jaanus A, MacKenzie BR, Martin G, Olenin S et al (2010) Status of biodiversity in the Baltic Sea. PLoS ONE 5(9):e12467

    Article  CAS  Google Scholar 

  • Olenin S (1992) Changes in a southeastern Baltic soft-bottom community induced by dredged spoil dumping. In: Bjørrnestad E, Hagerman L, Jensen K (eds) Proceedings of the 12th Baltic Marine Biologists Symposium. Olsen and Olsen, Fredensborg, pp 119–123

    Google Scholar 

  • Opaliński K, Maciejewska K, Urban-Malinga B, Węsławski JM (2010) The oxygen fluxes of sandy littoral areas: quantifying primary and secondary producers in the Baltic Sea. Marine Pollution Bulletin 61:211–214

    Article  CAS  Google Scholar 

  • Orlova M, Golubkov S, Kalinina L, Ingatieva N (2004) Dreissena polymorpha (Bivalvia: Dreissenidae) in the Neva Estuary (eastern Gulf of Finland, Baltic Sea): is it a biofilter or source for pollution? Marine Pollution Bulletin 49:196–205

    Article  CAS  Google Scholar 

  • Ozolins J, Kranz A, Toman A (1998) Three men in a boat (to say nothing of the otter in Latvia). IUCN Otter Specialist Group Bulletin 15:103–108

    Google Scholar 

  • Pallo P, Widbom B, Ólafsson E (1998) A quantitative survey of the benthic meiofauna in the Gulf of Riga (eastern Baltic Sea), with special reference to the structure of nematode assemblages. Ophelia 49:117–139

    Article  Google Scholar 

  • Pihl L (1989) Abundance, biomass and production of juvenile flatfish in southeastern Kattegat. Journal of Sea Research 24:69–81

    Article  Google Scholar 

  • Pliński M, Kwiatkowski J (1996) Microphytobenthos of the shallow littoral of the southern Baltic. Oceanological Studies 25:65–79

    Google Scholar 

  • Podgórska B, Mudryk ZJ, Skórczewski P (2008) Abundance and production of bacteria in a marine beach (southern Baltic Sea). Polish Journal of Ecology 56:405–414

    Google Scholar 

  • Powilleit M, Kleine J, Leuchs H (2006) Impacts of experimental dredged material disposal on a shallow, sublittoral macrofauna community in Mecklenburg Bay (western Baltic Sea). Marine Pollution Bulletin 52:386–396

    Article  CAS  Google Scholar 

  • Powilleit M, Kube J (1999) Effects of severe oxygen depletion on macrobenthos in the Pomeranian Bay (southern Baltic Sea): a case study in a shallow, sublittoral habitat characterized by low species richness. Journal of Sea Research 42:221–234

    Article  Google Scholar 

  • Radziejewska T (1986) On the role of Mytilus edulis aggregations in enhancing meiofauna communities off the southern Baltic coast. Ophelia, Supplement 4:211–218

    Google Scholar 

  • Remane A (1933) Verteilung und Organisation der benthonischen Mikrofauna der Kieler Bucht. Wissenschaftliche Meeresuntersuchungen/Abteilung Kiel, N.F. 21/2:163–221 [in German]

    Google Scholar 

  • Reusch TBH, Chapman ARO (1995) Storm effects on eelgrass (Zostera marina L.) and blue mussel (Mytilus edulis L.) beds. Journal of Experimental Marine Biology and Ecology 192:257–271

    Article  Google Scholar 

  • Rokicka-Praxmajer J, Radziejewska T (2002) Free-living nematodes of the Pomeranian Bay (southern Baltic). Part 1. A preliminary analysis of nematode variability in an area affected by direct river runoff. Acta Scientiorum Polonorum, Piscaria 1:85–104

    Google Scholar 

  • Rokicka-Praxmajer J, Radziejewska T, Dworczak H (1998) Meiobenthic communities of the Pomeranian Bay (southern Baltic): effects of proximity to river discharge. Oceanologia 40:243–260

    Google Scholar 

  • Sapota MR (2004) The round goby (Neogobius melanostomus) in the Gulf of Gdańsk – a species introduction into the Baltic Sea. Hydrobiologia 514:219–224

    Article  Google Scholar 

  • Schierding M, Vahder S, Dau L, Irmler U (2011) Impacts on biodiversity at Baltic Sea beaches. Biodiversity and Conservation 20:1973–1985

    Article  Google Scholar 

  • Schwinghamer P (1981) Characteristic size distributions of integral benthic communities. Canadian Journal of Fisheries and Aquatic Sciences 38:1255–1263

    Article  Google Scholar 

  • Simm M, Ojaveer E (2000) Dynamics of copepods and fish larvae in Pärnu Bay (NE part of the Gulf of Riga) in the spring-summer period. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 49:317–326

    Google Scholar 

  • Smirnov AV (2002) Vertical distribution and abundance of gymnamoebae (Rhizopoda) in bottom sediments of the brackish water Nivå Bay (Baltic Sea, The Sound). Protist 153:239–250

    Article  Google Scholar 

  • Sonntag N, Garthe S, Adler S (2009) A freshwater species wintering in a brackish environment: habitat selection and diet of Slavonian grebes in the southern Baltic Sea. Estuarine, Coastal and Shelf Science 84:186–194

    Article  Google Scholar 

  • Southward AJ, Hawkins SJ, Burrows MT (1995) Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. Journal of Thermal Biology 20:127–155

    Article  Google Scholar 

  • Spungis V (2002) Invertebrates of the sandy coastal habitats in Latvia. Latvijas Entomologs 39:10–19

    Google Scholar 

  • Stempniewicz L (1995) Feeding ecology of the long-tailed duck Clangula hyemalis wintering in the Gulf of Gdańsk (southern Baltic Sea). Ornis Svecica 5:133–142

    Google Scholar 

  • Sundbäck K, Miles A, Göransson E (2000) Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Marine Ecology Progress Series 200:59–76

    Article  Google Scholar 

  • Sundbäck K, Nilsson P, Nilsson C, Jonsson B (1996) Balance between autotrophic and heterotrophic components and processes in microbenthic communities of sandy sediments: a field study. Estuarine, Coastal and Shelf Science 43:689–706

    Article  Google Scholar 

  • Swedmark B (1964) The interstitial fauna of marine sand. Biological Reviews 39:1–42

    Article  Google Scholar 

  • Tomczak MT, Müller-Karulis B, Järv L, Kotta J, Martin G et al (2009) Analysis of trophic networks and carbon flows in southeastern Baltic coastal ecosystems. Progress in Oceanography 81:111–131

    Article  Google Scholar 

  • Urban-Malinga B, Hedtkamp SIC, van Beusekom JEE, Wiktor J, Węsławski JM (2006) Comparison of nematode communities in Baltic and North Sea sublittoral, permeable sands – diversity and environmental control. Estuarine, Coastal and Shelf Science 70:224–238

    Article  Google Scholar 

  • Urban-Malinga B, Wiktor J (2003) Microphytobenthic primary production along a non-tidal sandy beach gradient: an annual study from the Baltic Sea. Oceanologia 45:705–720

    Google Scholar 

  • Vaitkus G (1999) Spatial dynamics of wintering seabird populations in the Baltic Proper: a review of factors and adaptations. Acta Zoologica Lituanica 9:126–141

    Article  Google Scholar 

  • Veber T, Kotta J, Lauringson V, Kotta I (2009) Influence of the local abiotic environment, weather and regional nutrient loading on macrobenthic invertebrate feeding groups in a shallow brackish water ecosystem. Oceanologia 51:541–559

    Article  Google Scholar 

  • Voipio A (ed) (1981) The Baltic Sea. Elsevier, Amsterdam 418 pp

    Google Scholar 

  • Węsławski JM, Kupidura T, Żabicki M (2000a) Sandhoppers, Talitrus saltator (Montagu, 1808) (Amphipoda, Gammaridea), at the Polish Baltic coast: seasonal and spatial distribution patterns. Crustaceana 73:961–969

    Article  Google Scholar 

  • Węsławski JM, Urban-Malinga B, Kotwicki L, Opaliński K, Szymelfenig M, Dutkowski M (2000b) Sandy coastlines – are there conflicts between recreation and natural values? Oceanological Studies 29:5–18

    Google Scholar 

  • Wolender M, Zych A (2007) Beetles (Coleoptera) from seaside beach and dunes in the regions of Świnoujście, Międzyzdroje and Wisełka (Poland) located along the southern coast of the Baltic Sea. Baltic Journal of Coleopterology 7:61–71

    Google Scholar 

  • Zettler ML, Daunys D, Kotta J, Bick A (2002) History and success of an invasion into the Baltic Sea: the polychaete Marenzelleria cf. viridis, development and strategies. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 66–75

    Chapter  Google Scholar 

  • Žydelis R, Ruškyté D (2005) Winter foraging of long-tailed ducks (Clangula hyemalis) exploiting different benthic communities in the Baltic Sea. The Wilson Bulletin 117:133–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Radziejewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Radziejewska, T., Kotta, J., Kotwicki, L. (2017). Sandy coasts. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_12

Download citation

Publish with us

Policies and ethics