Skip to main content

Functional Diversity of Fibroblasts

  • Chapter
  • First Online:

Part of the book series: The Tumor Microenvironment ((TTME,volume 4))

Abstract

Solid tumours are multi-cellular tissues comprised of tumour cells and stromal cells, including fibroblasts, endothelial cells and inflammatory cells. When a cancer cell metastasizes, it first will be exposed to cancer associated fibroblasts in the immediate tumour microenvironment and subsequently to normal fibroblasts as it traverses the underlying connective tissue on its way to the bloodstream. So far, the interactions of tumour cells with stromal fibroblasts influence tumour biology by mechanisms that are not yet fully understood. It is known that cells of the tumour parenchyma and stroma are in extensive crosstalk, and the composition of the stroma and the nature of tumour stromal interactions change over time with tumour progression (Beacham and Cukierman, Semin Cancer Biol 15:329–341, 2005; Proia and Kuperwasser, Cell Cycle 4:1022–1025, 2005). The tumour-stroma crosstalk markedly influences not only tumour growth by modifying and controlling angiogenesis, suppressing or subverting immune responses of the host, but also by modulating extracellular matrix composition, and secreting factors which in turn stimulate cells to further alter cell physiology as well as the cellular and acellular composition of the tumour microenvironment (Stuelten et al., PlosOne 5:e9832, 2010; Olumi et al., Cancer Res 59:5002–5011, 1999; Liotta and Kohn Nature 411:375–379, 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baglole CJ, Ray DM, Bernstein SH, Feldon SE, Smith TJ (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest 35:297–325

    Article  PubMed  CAS  Google Scholar 

  • Bayreuther K, Rodemann HP, Francz PI, Maier K (1988) Differentiation of fibroblast stem cells. J Cell Sci Suppl 10:115–130

    PubMed  CAS  Google Scholar 

  • Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI (1989) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A 85:5112–5116

    Article  Google Scholar 

  • Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15:329–341

    Article  PubMed  Google Scholar 

  • Bell E (1995) Strategy of the selection of scaffolds for tissue engineering. Tissue Eng 1:163–179

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A 76:1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ehrlich HP, Sher S, Merrill C, Sarber R, Hull B, Nakatsuji T, Church D, Buttle DJ (1981) Development and use of a living skin equivalent. Plast Reconstr Surg 67:386–392

    Article  PubMed  CAS  Google Scholar 

  • Boyce ST (2001) Design principles for the composition and performance of cultured skin substitutes. Burns 27:523–533

    Article  PubMed  CAS  Google Scholar 

  • Boyce ST, Christianson D, Hansbrough JF (1988) Structure of a collagen-GAG skin substitute optimized for cultured human epidermal keratinocytes. J Biomed Mater Res 22:939–957

    Article  PubMed  CAS  Google Scholar 

  • Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD (1995) Comparative assessment of cultured skin substitutes and native skin autograft for the treatment of full thickness burns. Ann Surg 222:743–752

    Article  PubMed  CAS  Google Scholar 

  • Boyce ST, Supp AT, Wickett RR, Hoath SB, Warden GD (2000) Assessment with the dermal torquemeter of skin pliability after treatment of burns with cultured skin substitutes. J Burn Care Rehabil 21:55–63

    Article  PubMed  CAS  Google Scholar 

  • Briggaman RA, Wheeler CE (1968) Epidermal–dermal interactions in adult human skin: role of dermis in epidermal maintenance. J Invest Dermatol 51:454–465

    PubMed  CAS  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulations that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  Google Scholar 

  • Burger A, Löffler H, Bamberg M, Rodemann HP (1998) Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 73:401–408

    Article  PubMed  CAS  Google Scholar 

  • Castor CW, Prince RK, Dorstewitz EL (1962) Characteristics of human “fibroblasts” cultivated in vitro from different anatomical sites. Lab Invest 11:703–713

    PubMed  CAS  Google Scholar 

  • Chang HY, Chi JT, Dudoit S, Bondre C, Van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci 99:12877–12882

    Article  PubMed  CAS  Google Scholar 

  • Chesney J, Bacher M, Bender A, Bucala R (1997) The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci U S A 94:6307–6312

    Article  PubMed  CAS  Google Scholar 

  • Chipev CC, Simon M (2002) Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFbeta1. BMC Dermatol 2:13

    Article  PubMed  Google Scholar 

  • Clark RAF (2003) Epithelial–mesenchymal networks in wounds: a hierarchal view. Commentary. J Invest Dermatol 120:9–11

    Article  Google Scholar 

  • Clark RAF, Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF (eds) (1993) Mechanisms of cutaneous wound repair; dermatology in general medicine. McGraw Hill, New York, pp 473–486

    Google Scholar 

  • Contard P, Bartel RL, Jacobs L, Perlish JS, MacDonald ED, Handler L, Cone D, Fleischmajer R (1993) Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone. J Invest Dermatol 100:35–59

    Article  PubMed  CAS  Google Scholar 

  • Cooper ML, Andree C, Hansbrough JF, Zapata-Sirvent RL, Spielvogel Rl (1993) Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J Invest Dermatol 101:811–819

    Article  PubMed  CAS  Google Scholar 

  • Debacq-Chainliaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O (2005) Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci 118:743–758

    Article  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelly C, Medrano EE, Linskens M, Rubel JJ, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Google Scholar 

  • Eckes B, Mauch C, Hüppe G, Krieg T (1993) Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms. FEBS 216:129–133

    Article  Google Scholar 

  • Eckes B, Kessler D, Aumailley M, Krieg T (2000) Interactions of fibroblasts with the extracellular matrix: implications for the understanding of fibrosis. Springer Semin Immunopathol 21:415–429

    Article  Google Scholar 

  • Fluck J, Querfeld C, Cremer A, Niland S, Krieg T, Sollberg S (1998) Normal human primary fibroblasts undergo apoptosis in three-dimensional contractile collagen gels. J Invest Dermatol 110:153–157

    Article  PubMed  CAS  Google Scholar 

  • Fusenig NE (1994) Epithelia–mesenchymal interactions regulate keratinocyte growth and differentiation in vitro. In: Leigh I, Lane B, Watt F (eds) The keratinocyte handbook. Cambridge University Press, Cambridge, pp 71–94

    Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550

    Article  PubMed  CAS  Google Scholar 

  • Germain L, Jean A, Auger F, Garrel DR (1994) Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts. J Surg Res 57:268–273

    Article  PubMed  CAS  Google Scholar 

  • Griffiths M, Ojeh N, Livingstone R, Price R, Navsaria H (2004). Survival of Apligraf in acute human wounds. Tissue Eng 10:1180–1195

    PubMed  CAS  Google Scholar 

  • Gron B, Stoltze K, Andersson A, Dabelsteen E (2002) Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes. APMIS 110:892–898

    Article  PubMed  CAS  Google Scholar 

  • Hakenjos L, Bamberg M, Rodemann HP (2000) TGF-b1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic response. Int J Radiat Biol 76:503–509

    Article  PubMed  CAS  Google Scholar 

  • Hasan A, Murata H, Falabella A, Ochoa S, Zhou L, Badiavas E, Falanga V (1997) Dermal fibroblasts from venous ulcers are unresponsive to the action of transforming growth factor-beta1. J Dermatol Sci 16:59–66

    Article  PubMed  CAS  Google Scholar 

  • Herskind C, Bentzen SM, Overgaard J, Bamberg M, Rodemann HP (1998) Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy. Radiother Oncol 47:263–269

    Article  PubMed  CAS  Google Scholar 

  • Kern A, Liu K, Mansbridge J (2001) Modification of fibroblast gamma-interferon responses by extracellular matrix. J Invest Dermatol 117:112–118

    Article  PubMed  CAS  Google Scholar 

  • Kern A, Liu K, Mansbridge J (2002) Modulation of interferon-gamma response by dermal fibroblast extracellular matrix. Ann N Y Acad Sci 961:364–367

    Article  PubMed  CAS  Google Scholar 

  • Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B (2001) Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem 276:36575–36585

    Article  PubMed  CAS  Google Scholar 

  • Knecht A, Fine LG, Kleinman KS, Rodemann HP, Müller GA, Woo DD, Norman JT (1991) Fibroblasts of rabbit kidney in culture. II. Paracrine stimulation of papillary fibroblasts by PDGF. Am J Physiol 261:F292–F299

    PubMed  CAS  Google Scholar 

  • Krejci NC, Cuono CB, Langdon RC, McGuire J (1991) In vitro reconstitution of skin: fibroblasts facilitate keratinocyte growth and differentiation on acellular reticular dermis. J Invest Dermatol 97:843–848

    Article  PubMed  CAS  Google Scholar 

  • Lamme EN, van Leeuwen RTJ, Brandsma K, van Marle J, Middelkoop E (2000) Higher number of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar-tissue formation. J Pathol 190:595–603

    Article  PubMed  CAS  Google Scholar 

  • Lamme EN, van Leeuwen RT, Mekkes JR, Middelkoop E (2002) Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formation. Wound Repair Regen 10:152–160

    Article  PubMed  Google Scholar 

  • Langholz O, Rockel D, Mauch C, Kozlowska E, Bank I, Krieg T, Eckes B (1995) Collagen and collagenase expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J Cell Biol 131:1903–1915

    Article  PubMed  CAS  Google Scholar 

  • Lara PC, Russell NS, Smolders IJ, Bartelink H, Begg AC, Coco-Martin JM (1996) Radiation-induced differentiation of human skin fibroblasts: relationship with cell survival and collagen production. Int J Radiat Biol 70:683–692

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Bae SC (2002) TGF-beta-dependent cell growth arrest and apoptosis. J Biochem Mol Biol 35:47–53

    Article  PubMed  CAS  Google Scholar 

  • Limat A, Hunziker T, Boillat C, Bayreuther K, Noser F (1989) Postmitotic human dermal dermal fibroblasts efficiently support the growth of human follicular keratinocytes. J Invest Dermatol 92:758–762

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Kohn EC (2001) The microenvironment of the tumor-host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  • Loots MA, Lamme EN, Mekkes JR, Bos JD, Middelkoop E (1999) Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res 291:93–99

    Article  PubMed  CAS  Google Scholar 

  • Maas-Szabowski N, Fusenig NE (1996) Interleukin-1-induced growth factor expression in postmitotic and resting fibroblasts. J Invest Dermatol 107:849–855

    Article  PubMed  CAS  Google Scholar 

  • Mansbridge JN, Hanawalt PC (1988) Role of transforming growth factor beta in the maturation of human epidermal keratinocytes. J Invest Dermatol 90:336–341

    Article  PubMed  CAS  Google Scholar 

  • Micke P, Ostman A (2005) Exploring the tumor environment: cancer associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 9:1217–1233

    Article  PubMed  CAS  Google Scholar 

  • Middelkoop E (2005) Fibroblast phenotypes and their relevance for wound healing. Int J Low Extrem Wounds 4:9–11

    Article  PubMed  Google Scholar 

  • Mollenhauer J, Bayreuther K (1986) Donor-age-related changes in the morphology, growth potential, and collagen biosynthesis in rat fibroblast subpopulations in vitro. Differentiation 32:165–172

    Article  PubMed  CAS  Google Scholar 

  • Morocutti A, Earle KA, Sethi M, Piras G, Pal K, Richards D, Rodemann HP, Viberti GC (1996) Premature senescence of skin fibroblasts from insulin-dependent diabetic patients with kidney disease. Kidney Int 50:250–256

    Article  PubMed  CAS  Google Scholar 

  • Morocutti A, Earle KA, Rodemann HP, Viberti GC (1997) Premature cell ageing and evolution of diabetic nephropathy. Diabetologia 40:244–246

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Pawelek P, Grinnell F (1989) Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity. J Invest Dermatol 93:792–798

    Article  PubMed  CAS  Google Scholar 

  • Nolte S, Xu W, Rennekampff H-O, Rodemann HP (2008) Diversity of fibroblasts—a review on implications for skin tissue engineering. Cell Tiss Org 187:165–176

    Article  Google Scholar 

  • Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tisty TD (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostate epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  • Orimo A, Gupta PB, Segroi DC, Renzana-Seisdedos F, Delaunay T (2005) Stromal fibroblasts present in invasive human breast carcinomas promote growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  • Pascal T, Debacq-Chainliaux F, Chrétien A, Bastin C, Dabée AF, Bertholet V, Remacle J, Toussaint O (2005) Comparison of replicative senescence and stress-induced premature senescence combining differential display and low-density DNA arrays. FEBS Lett 579:3651–3659

    Article  PubMed  CAS  Google Scholar 

  • Proia DA, Kuperwasser C (2005) Stroma: tumor agonist or antagonist. Cell Cycle 4:1022–1025

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald JG, Green H (1975) Feeder layer system: serial cultivation of strains of human epidermal keratinocytes. Cell 6:331–343

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PloS Genet 2:1084–1096

    Article  CAS  Google Scholar 

  • Rinn JL, Wang JK, Liu H, Montgomery K, van de Rijn M, Chang HY (2008) A systems biology approach to anatomic diversity of skin. J Invest Dermat 128:776–782

    Article  CAS  Google Scholar 

  • Rodemann HP (1989) Differential degradation of intracellular proteins in human skin fibroblasts of mitotic and mitomycin C(MMC)-induced postmitotic differentiation states. Differentiation 42:37–43

    Article  PubMed  CAS  Google Scholar 

  • Rodemann HP (1993) Differential gene expression, protein synthesis and degradation in ageing fibroblasts. In: Bernd A, Bereiter-Hahn J, Hevert F Holzmann H (eds) Cell culture models for dermatological research. Springer, Berlin, pp 272–277

    Chapter  Google Scholar 

  • Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35:83–90

    Article  PubMed  CAS  Google Scholar 

  • Rodemann HP, Mueller GA (1990) Abnormal growth, clonal proliferation and 35S-methionine polypeptide pattern of fibroblasts derived from kidneys with interstitial fibrosis. Proc Soc Exp Biol Med 195:57–63

    PubMed  CAS  Google Scholar 

  • Rodemann HP, Bayreuther K, Francz PI, Dittmann K, Albiez M (1989) Selective enrichment and biochemical characterisation of seven fibroblast cell types of human skin fibroblast populations in vitro. Exp Cell Res 180:84–93

    Article  PubMed  CAS  Google Scholar 

  • Rodemann HP, Müller GA, Knecht A, Norman JT, Fine LG (1991) Fibroblasts of rabbit kidney in culture: I. characterization and identification of cell-specific markers. Am J Physiol 261:283–291

    Google Scholar 

  • Rodemann HP, Binder A, Burger A, Löffler H, Bamberg M (1996) The underlying cellular mechanisms of fibrosis. Kidney Int 49:32–36

    Google Scholar 

  • Rossio-Pasquier P, Casanova D, Jomard A, Dermarchez M (1999) Wound healing of human skin transplanted onto the nude mouse after a superficial excisional injury: human dermal reconstruction is achieved in several steps by two different fibroblast subpopulations. Arch Dermatol Res 291:591–599

    Article  PubMed  CAS  Google Scholar 

  • Rudolph R, Vande J, Berg G, Pierce F (1991) Changing concept in myofibroblast function and control. In: Janssen H, Rooman JIS (eds) Wound healing. Wrightson Biomedical Publishing Ltd., Petersfield, pp 103–115

    Google Scholar 

  • Sahuc F, Nakazawa K, Berthod F, Collombel C, Damour O (1996) Mesenchymal–epithelial interactions regulate gene expression of type VII collagen and kalinin in keratinocytes and dermal-epidermal junction formation in a skin equivalent model. Wound Rep Regen 4:93–102

    Article  CAS  Google Scholar 

  • Sorrell, JM, Caplan AI (2004) Fibroblast heterogeneity: more than skin deep. J Cell Sci 117:667–675

    Article  PubMed  CAS  Google Scholar 

  • Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW (2001) Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix organization and matrix metalloproteinase activity. Br J Dermatol 144:229–237

    Article  PubMed  CAS  Google Scholar 

  • Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE (2010) Transient tumor–fibroblast interactions increase tumor cell malignancy by TGF-b mediated mechanism in a mouse xenograft model of brest cancer. PlosOne 5:e9832

    Google Scholar 

  • Van Den Bogaerdt AJ, van Zuijlen PPM, van Galen M, Lamme EN, Middelkoop E (2002) The suitability of cells from different tissues to be used in tissue engineered skin substitutes. Arch Dermatol Res 294:135–142

    Article  PubMed  CAS  Google Scholar 

  • von Pfeil A, Hakenjos L, Herskind C, Dittmann K, Weller M, Rodemann HP (2002) Irradiated homozygous TGF-1 knockout fibroblasts show enhanced clonogenic survival as compared with TGF-1 wild-type fibroblasts. Int J Radiat Biol 78:331–339

    Article  PubMed  CAS  Google Scholar 

  • Von Zglinicki T, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193

    Article  PubMed  CAS  Google Scholar 

  • Waelti ER, Inaebnit SP, Rast HP, Hunziker T, Limat A, Braathen LR, Wiesmann U (1992) Co-culture of human keratinocytes on post-mitotic human dermal fibroblast feeder cells: production of large amounts of interleukin-6. J Invest Dermatol 98:805–808

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Hearing VJ, Itami S, Yoshikawa K, Katayama I (2005) Mesenchymal–epithelial interactions in the skin: aiming for site specific tissue regeneration. J Dermatol Sci 40:1–9

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Scott PG, Dodd C, Medina A, Jiao H, Shankowsky HA, Ghahary A, Tredget EE (2005) Identification of fibrocytes in postburn hypertophic scars. Wound Repair Regen 13:398–404

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Peter Rodemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rodemann, H.P., Rennekampff, HO. (2011). Functional Diversity of Fibroblasts. In: Mueller, M., Fusenig, N. (eds) Tumor-Associated Fibroblasts and their Matrix. The Tumor Microenvironment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0659-0_2

Download citation

Publish with us

Policies and ethics