Distributed Trading Architecture with Sensors Support for a Secure Decision Making

  • Javier Martínez Fernández
  • Ralf Seepold
  • Natividad Martínez Madrid
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 81)

Abstract

There are many environments in which wrong decisions may cause severe problems. The crucial issue is to detect the point of transition from a well-thought decision into a decision taken under stress. Sensors support monitoring of human behavior and tracking of individual biometric parameters. As a test case, a stock trader has been selected since this scenario where the stress factor occurs quite frequently. The architecture will be based on an OSGi Framework that allows integrating sensor data quickly. An expert system is implemented as an OSGi application to alert the user in case he is taking decisions under stress, and it will propose recommendations.

Keywords

Stock Market Expert System Stress Sensor Stock Trader Trading Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Metastock (2010) http://www.equis.com
  3. 3.
    Brown CA (1991) Holland, I y Mesch, R. “TRADER: an expert system for trading commodities futures”, Artificial intelligence on wall street, 1991. Proceedings, ISBN: 0-8186-2240-7Google Scholar
  4. 4.
    Martínez J, Heyn A (2002) Sistema Experto para la Recomendación de Valores en el Ibex 35. Master Thesis, Universidad Politécnica de Madrid, SpainGoogle Scholar
  5. 5.
    Wolberg JJ (2000) Expert trading systems: modeling financial markets with kernel regression. Wiley, ISBN-10: 0471345083Google Scholar
  6. 6.
    Ang KK, Quek C (2006) Stock trading using RSPOP: a novel rough set-based neuro-fuzzy approach. IEEE Trans Neural Netw 17(5):1301–1315CrossRefGoogle Scholar
  7. 7.
    Cao L, Luo C, Zhang C (2007) Developing actionable trading strategies for trading agents. In: IEEE/WIC/ACM international conference on intelligent agent technologyGoogle Scholar
  8. 8.
    Independent Reflections on Trading Systems, (Tradingsys) (2010) http://www.tradingsys.org
  9. 9.
    Coates JM, Herbert J (2008) Endogenous steroids and financial risk taking on a London trading floor. In: Proceedings of the national academy of sciences, 2008—national acad sciencesGoogle Scholar
  10. 10.
    Johnston VS (2000) Why we feel, “the science of human emotions”, ISBN 0738203165Google Scholar
  11. 11.
    Cryer B, McCraty R, Childre D (2003) Pull the plug on stress. Harv Bus Rev 81(7):102–107Google Scholar
  12. 12.
    Open Service Gateway initiative (OSGi) (2010) http://www.osgi.org
  13. 13.
    Stress Monitor, Health Reviser (2010) http://www.healthreviser.com/content/stress-monitor
  14. 14.
    Infobolsa (2010) http://www.infobolsa.es
  15. 15.
    Sánchez y Beltrán JP (1998) Sistemas Expertos. “Una metodología de programación. Editorial RA-MA”, ISBN 84-86381-48-7Google Scholar
  16. 16.
    Dussauchoy A, Nchatain J (1988) Sistemas Expertos. Métodos y Herramientas. Editorial Paraninfo, 84-283-1599-XGoogle Scholar
  17. 17.
    Gómez A, Montes C (1997) Ingeniería del Conocimiento”. Editorial Centro de Estudios Ramón Areces, S.A, 978-84-8004-269-7Google Scholar
  18. 18.
    Amat Salas O (2004) La bolsa. “Funcionamiento y técnicas para invertir”. Editorial Deusto S.A, ISBN: 200978-84-234-2240-1Google Scholar
  19. 19.
    Buchanan BG, Shortliffe EH (1984) Rule-based expert systems: the Mycin experiments of the Standford Heuristic Programming Project”. Addison Wesley Publishing Company, pp 233–262, ISBN 9780201101720Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Javier Martínez Fernández
    • 1
  • Ralf Seepold
    • 2
  • Natividad Martínez Madrid
    • 3
  1. 1.Universidad Carlos III de MadridLeganesSpain
  2. 2.University of Applied Sciences KonstanzKonstanzGermany
  3. 3.Reutlingen UniversityReutlingenGermany

Personalised recommendations