Skip to main content

Factors regulating epilithic biofilm carbon cycling and release with nutrient enrichment in headwater streams

Stream biofilm carbon cycling

  • Global Change and River Ecosystems
  • Chapter
Global Change and River Ecosystems—Implications for Structure, Function and Ecosystem Services

Part of the book series: Developments in Hydrobiology 215 ((DIHY,volume 215))

Abstract

This study uses the results from in situ 13C-labeling experiments conducted in six streams representing a gradient in nutrient enrichment to explore how nutrient availability, stoichiometry, and the composition of active biofilm phototrophs may regulate C cycling in epilithic biofilms. Carbon cycling was tracked through epilithic biofilm communities by assessing net primary production (NPP) and 13C-labeling of biofilm phospholipids fatty acids (PLFA), and stream water dissolved organic carbon (DOC) within light and dark enclosure incubations. We used generalized linear models coupled with an information-theoretic approach for model selection to assess which factors most influenced C exchange within and DOC release from these biofilms. The ratio of new C incorporated into heterotrophic bacterial PLFA ia15:0 to total polyunsaturated fatty acids (PUFA) indicated that greatest algal–bacterial exchange occurred in the two most nutrient-poor streams. Further, this ratio was best predicted by newC18:3ω3/PUFA suggesting increased relative activity of some algae relates to reduced algal–bacterial C exchange within these biofilms. Net release of DOC represented 2–45% of NPP with greatest release of DOC having occurred in the two most nutrient-rich streams. Further, the model selection indicated that newC18:3ω3/PLFA was the only highly plausible explanatory factor for net DOC release, while a combination of NPP and newC18:3ω3/PLFA was a strong predictor of the quantity of new C released as DOC. The results presented here indicate factors regulating or correlating with the activity of green algae in these biofilms regulated the exchange of C within and DOC release from these biofilms. This suggests increased algal exudation and greater biofilm development with nutrient enrichment may increase DOC release but reduce bacterial use of autochthonous C within these biofilms.

Guest editors: R. J. Stevenson, S. Sabater / Global Change and River Ecosystems – Implications for Structure, Function and Ecosystem Services

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, G., I. B. Gustafsson & M. Boberg, 1992. Fatty-acid content and chemical-composition of fresh-water microalgae. Journal of Phycology 28: 37–50.

    Article  CAS  Google Scholar 

  • Alexander, R. B., R. A. Smith & G. E. Schwarz, 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403: 758–761.

    Google Scholar 

  • Anderson, D. R., W. A. Link, D. H. Johnson & K. P. Burnham, 2001. Suggestions for presenting the results of data analyses. Journal of Wildlife Management 65: 373–378.

    Article  Google Scholar 

  • Arnon, S., K. A. Gray & A. I. Packman, 2007. Biophysicochemical process coupling controls nitrate use by benthic biofilms. Limnology and Oceanography 52: 1665–1671.

    CAS  Google Scholar 

  • Augspurger, C., G. Gleixner, C. Kramer & K. Kusel, 2008. Tracking carbon flow in a 2-week-old and 6-week-old stream biofilm food web. Limnology and Oceanography 53: 642–650.

    Article  CAS  Google Scholar 

  • Bernhardt, E. S. & G. E. Likens, 2002. Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83: 1689–1700.

    Article  Google Scholar 

  • Bertrand, K. N., K. B. Gido, W. K. Dodds, J. N. Murdock & M. R. Whiles, 2009. Disturbance frequency and functional identity mediate ecosystem processes in prairie streams. Oikos 118: 917–933.

    Article  Google Scholar 

  • Biggs, B. J. F. & R. A. Smith, 2002. Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnology and Oceanography 47: 1175–1186.

    Google Scholar 

  • Bothwell, M. L., 1985. Phosphorus limitation of lotic periphyton growth rates: an intersite comparison using continuous-flow troughs (Thompson River system, British Columbia). Limnology and Oceanography 30: 527–542.

    Article  Google Scholar 

  • Brisco, S. & S. Ziegler, 2004. Effects of solar radiation on the utilization of dissolved organic matter (DOM) from two headwater streams. Aquatic Microbial Ecology 37: 197–208.

    Article  Google Scholar 

  • Brooks, M. L., D. M. Mcknight & W. H. Clements, 2007. Photochemical control of copper complexation by dissolved organic matter in Rocky Mountain streams, Colorado. Limnology and Oceanography 52: 766–779.

    Article  CAS  Google Scholar 

  • Brown, R. J., S. D. Rundle, T. H. Hutchinson, T. D. Williams & M. B. Jones, 2003. Small-scale detritus-invertebrate interactions: influence of detrital biofilm composition on development and reproduction in a meiofaunal copepod. Archiv fur Hydrobiologie 157: 117–129.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 1998. Model selection and interference: a practical information theoretical approach. Springer, New York.

    Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical-theoretic approach. Springer-Verlag.

    Google Scholar 

  • Carr, G. M., A. Morin & P. A. Chambers, 2005. Bacteria and algae in stream periphyton along a nutrient gradient. Freshwater Biology 50: 1337–1350.

    Article  Google Scholar 

  • Chamberlain, T. C., 1897. The method of multiple working hypotheses. Journal of Geology 6(5): 837–848.

    Article  Google Scholar 

  • Cooksey, K. E., J. B. Guckert, S. A. Williams & P. R. Callis, 1987. Fluorometric-determination of the neutral lipid-content of microalgal cells using Nile Red. Journal of Microbiological Methods 6: 333–345.

    Article  CAS  Google Scholar 

  • Cory, R. M., D. M. Mcknight, Y. P. Chin, P. Miller & C. L. Jaros, 2007. Chemical characteristics of fulvic acids from Arctic surface waters: microbial contributions and photochemical transformations. Journal of Geophysical Research – Biogeosciences 112: 8142–8149.

    Google Scholar 

  • Dobbs, F. C. & R. H. Findlay, 1993. Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Current Methods in Aquatic Microbial Ecology. Lewis Publishers, Baton Rouge: 347–358.

    Google Scholar 

  • Dodds, W. K., 2003. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. Journal of the North American Benthological Society 22: 171–181.

    Article  Google Scholar 

  • Dodds, W. K., B. J. F. Biggs & R. L. Lowe, 1999. Photosynthesis-irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structure. Journal of Phycology 35: 42–53.

    Article  Google Scholar 

  • Dodds, W. K., M. A. Evans-White, N. M. Gerlanc, L. Gray, D. A. Gudder, M. J. Kemp, A. L. López, D. Stagliano, E. A. Strauss & J. L. Tank, 2000. Quantification of the nitrogen cycle in a prairie stream. Ecosystems 3: 574–589.

    Article  CAS  Google Scholar 

  • Findlay, R. H. & F. C. Dobbs, 1993. Quantitative description of microbial communities using lipid analysis. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Current Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 271–284.

    Google Scholar 

  • Findlay, R. H., G. M. King & L. Watling, 1989. Efficacy of phospholipid analysis in determining microbial biomass in sediments. Applied and Environmental Microbiology 55: 2888–2893.

    CAS  PubMed  Google Scholar 

  • Fogg, G. E., 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica Marina 26: 3–14.

    Article  CAS  Google Scholar 

  • France, R., 1995. Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Canadian Fisheries and Aquatic Sciences 52: 651–656.

    Article  Google Scholar 

  • Fritz, K. M. & W. K. Dodds, 2002. Macroinvertebrate assemblage structure across a tallgrass prairie stream landscape. Archiv fur Hydrobiologie 154: 79–102.

    Google Scholar 

  • Frost, P. C., R. S. Stelzer, G. A. Lamberti & J. J. Elser, 2002. Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N:P ratios in lentic and lotic habitats. Journal of the North American Benthological Society 21: 515–528.

    Article  Google Scholar 

  • Graham, M. H., 2003. Confronting multicollinearity in ecological multiple linear regression. Ecology 84: 2809–2815.

    Article  Google Scholar 

  • Gregory, S. V., 1983. Plant-herbvoir interactions in stream systems. In Barnes, J. R. & G. W. Minshall (eds), Stream Ecology: Applications and Testing of General Ecology. Plenum Press, New York: 399.

    Google Scholar 

  • Grimm, N. B., 1987. Nitrogen dynamics during succession in a desert stream. Ecology 68: 1157–1170.

    Article  CAS  Google Scholar 

  • Guasch, H., E. Marti & S. Sabater, 1995. Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwater Biology 33: 373–383.

    Article  Google Scholar 

  • Haack, T. K. & G. A. Mcfeters, 1982. Nutritional relationships among microorganisms in an epilithic biofilm community. Microbial Ecology 8: 115–126.

    Article  CAS  Google Scholar 

  • Hay, C. H., T. G. Franti, D. B. Marx, E. J. Peters & L. W. Hesse, 2008. Macroinvertebrate drift density in relation to abiotic factors in the Missouri River. Hydrobiologia 598: 175–189.

    Article  Google Scholar 

  • Hessen, D. O., P. J. Faerovig & T. Andersen, 2002. Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83: 1886–1898.

    Article  Google Scholar 

  • Hoffmann, J. P., 2004. Generalized Linear Models an Applied Approach, 1st edn. Pearson, Boston, MA: 204 pp.

    Google Scholar 

  • Howarth, R. W., D. P. Swaney, E. W. Boyer, R. Marino, N. Jaworski & C. Goodale, 2006. The influence of climate on average nitrogen export from large watersheds in the Northeastern United States. Biogeochemistry 79: 163–186.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c and c2 in higher plants, algae, and natural phytoplankton. Biochemistry and Physiology of Plants 167: 191–194.

    Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1982. Diel fluctuations of DOC generated by algae in a piedmont stream. Limnology and Oceanography 27: 1091–1100.

    Article  CAS  Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1989. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnology and Oceanography 34: 718–733.

    Article  CAS  Google Scholar 

  • Liess, A., K. Lange, F. Schulz, J. J. Piggott, C. D. Matthaei & C. R. Townsend, 2009. Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. Journal of Ecology 97: 326–336.

    Article  Google Scholar 

  • Lindsey, J. K., 1997. Applying Generalized Linear Models. Springer, Berlin: 271 pp.

    Google Scholar 

  • Lohman, K., J. R. Jones & C. Baysingerdaniel, 1991. Experimental-evidence for nitrogen limitation in a Northern Ozark Stream. Journal of the North American Benthological Society 10: 14–23.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determinations of chlorophyll and phaeo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Google Scholar 

  • Lyon, D. R. & S. E. Ziegler, 2009. Carbon cycling within epilithic biofilm communities across a nutrient gradient of headwater streams. Limnology and Oceanography 54(2): 439–449.

    CAS  Google Scholar 

  • Mccormick, P. V. & R. J. Stevenson, 1991. Mechanisms of benthic algal succession in lotic environments. Ecology 72: 1835–1848.

    Article  Google Scholar 

  • Merritt, M. V., S. P. Rosenstein, C. Loh, R. H. S. Chou & M. M. Allen, 1991. A comparison of the major lipid classes and fatty-acid composition of marine unicellular cyanobacteria with fresh-water species. Archives of Microbiology 155: 107–113.

    Article  CAS  Google Scholar 

  • Meyer, J. L. & J. O’hop, 1983. Leaf-shredding insects as a source of dissolved organic carbon in headwater streams. American Midland Naturalist 109: 175–183.

    Article  Google Scholar 

  • Murray, R. E., K. E. Cooksey & J. C. Priscu, 1986. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia. Applied and Environmental Microbiology 52: 1177–1182.

    CAS  PubMed  Google Scholar 

  • Napolitano, G. E., 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems. In Arts, M. T. & B. C. Wainman (eds), Lipids in Freshwater Ecosystems. Springer, Berlin: 21–44.

    Google Scholar 

  • Neely, R. K. & R. G. Wetzel, 1995. Simultaneous use of 14C and 3H to determine autotrophic production and bacteria protein production in periphyton. Microbial Ecology 30: 227–237.

    Article  CAS  Google Scholar 

  • Norrman, B., U. L. Zweifel, C. S. Hopkinson Jr & B. Fry, 1995. Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnology and Oceanography 40: 898–907.

    Article  CAS  Google Scholar 

  • Parker, P. L., C. Van Baalen & L. Maurer, 1967. Fatty acids in eleven species of blue-green algae: geochemical significance. Science 155: 707–708.

    Article  CAS  PubMed  Google Scholar 

  • Passy, S. I., 2008. Continental diatom biodiversity in stream benthos declines as more nutrients become limiting. Proceedings of the National Academy of Sciences 105: 9663–9667.

    Google Scholar 

  • Patrick, R., 1972. Aquatic communities as indices of pollution. In Thomas, W. A. (ed.), Indicators of Environmental Quality. Plenum Publishing Corp., New York: 93–100.

    Google Scholar 

  • Patrick, R. & D. M. Palavage, 1994. The value of species as indicators of water quality. Proceedings of the Academy of Natural Sciences of Philadelphia 145: 55–92.

    Google Scholar 

  • Peterson, C. G. & N. B. Grimm, 1992. Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. Journal of the North American Benthological Society 11: 20–36.

    Google Scholar 

  • Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. T. Meyer, J. L. Tank, E. Marti, W. B. Boweden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. Hamilton & S. D. Gregory, 2001. Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Power, M. E., M. S. Parker & W. E. Dietrich, 2008. Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecological Monographs 78: 263–282.

    Article  Google Scholar 

  • Pringle, C. M., 1990. Nutrient spatial heterogeneity – effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905–920.

    Article  Google Scholar 

  • Pusch, M., D. Fiebig, I. Brettar, H. Eisenmann, B. K. Ellis, L. A. Kaplan, M. A. Lock, M. W. Naegeli & W. Traunspurger, 1998. The role of microorganisms in the ecological connectivity of running waters. Freshwater Biology 40: 453–495.

    Article  Google Scholar 

  • Rabalais, N. N., 2002. Nitrogen in aquatic ecosystems. Ambio 31: 102–112.

    PubMed  Google Scholar 

  • Rier, S. T., K. A. Kuehn & S. N. Francoeur, 2007. Algal regulation of extracellular enzyme activity in stream microbial communities associated with inert substrata and detritus. Journal of the North American Benthological Society 26: 439–449.

    Google Scholar 

  • Romani, A. M. & S. Sabater, 1998. A stromatolitic cyanobacterial crust in a Mediterranean stream optimizes organic matter use. Aquatic Microbial Ecology 16: 131–141.

    Article  Google Scholar 

  • Rosemond, A. D., P. J. Mulholland & S. H. Brawley, 2000. Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients, and herbivores. Canadian Journal of Fisheries and Aquatic Sciences 57: 66–75.

    Google Scholar 

  • Sallal, A. K., N. A. Nimer & S. S. Radwan, 1990. Lipid and fatty-acid composition of fresh-water cyanobacteria. Journal of General Microbiology 136: 2043–2048.

    CAS  Google Scholar 

  • Scott, J. T., J. A. Back, J. M. Taylor & R. S. King, 2008. Does nutrient enrichment decouple algal-bacterial production in periphyton? Journal of the North American Benthological Society 27: 332–344.

    Article  Google Scholar 

  • Seitzinger, S. P. & C. Kroeze, 1998. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles 12: 93–113.

    Article  CAS  Google Scholar 

  • Sprague, L. A. & D. L. Lorenz, 2009. Regional nutrient trends in streams and rivers of the United States, 1993–2003. Environmental Science and Technology 43: 3430–3435.

    Article  CAS  PubMed  Google Scholar 

  • Steinman, A. D., 1996. Effects of grazers on benthic freshwater algae. In Bothwell, R. J. & R. L. Lowe (eds), Algal Ecology – Freshwater Benthic Ecosystems. Academic Press, London: 341–373.

    Google Scholar 

  • Steinman, A. D., P. J. Mulholland & D. B. Kirschtel, 1991. Interactive effects of nutrient reduction and herbivory on biomass, taxonomic structure, and P-uptake in lotic periphyton communities. Canadian Journal of Fisheries and Aquatic Sciences 48: 1951–1959.

    Article  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2001. Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46: 356–367.

    Article  Google Scholar 

  • Stevenson, R. J., S. T. Rier, C. M. Riseng, R. E. Schultz & M. J. Wiley, 2006. Comparing effects of nutrients on algal biomass in streams in two regions with different disturbance regimes and with applications for developing nutrient criteria. Hydrobiologia 561: 149–165.

    Article  CAS  Google Scholar 

  • Van Den Meersche, K., J. J. Middelburg, K. Soetaert, P. Van Rijswijk, H. T. S. Boschker & C. H. R. Heip, 2004. Carbon–nitrogen coupling and algal–bacterial interactions during an experimental bloom: modeling a 13C tracer experiment. Limnology and Oceanography 49: 862–878.

    Article  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Walton, S. P., E. B. Welch & R. R. Horner, 1995. Stream periphyton response to grazing and changes in phosphorus concentration. Hydrobiologia 302: 31–46.

    Article  CAS  Google Scholar 

  • Wedderburn, R. W. M., 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61: 439–447.

    Google Scholar 

  • White, D. C., 1983. Analysis of microorganisms in terms of quantity and activity in natural environments. Symposium of the Society for General Microbiology 34: 37–48.

    Google Scholar 

  • White, D. C. & D. B. Ringelberg, 1998. Signature lipid biomarker analysis. In Burlage, R. S., R. Atlas, D. Stahl, G. Geesey & G. Sayler (eds), Techniques in Microbial Ecology. Oxford University Press, New York: 255–272.

    Google Scholar 

  • White, G. C., 2001. Statistical models: keys to understanding the natural world. In Shenk, T. M. & A. B. Franklin (eds), Modeling in Natural Resource Management: Development, Interpretation, and Application. Island Press, Washington, DC: 35–56.

    Google Scholar 

  • Wood, B. J. B., 1988. Lipids of algae and protozoa. In Ratledge, C. & S. G. Wilkinson (eds), Microbial Lipids. Harcourt Brace Jovanovich, New York: 807.

    Google Scholar 

  • Zar, J. H., 1999. Biostatistical analysis. Upper Saddle River, NJ, USA, Prentice Hall.

    Google Scholar 

  • Ziegler, S. E., D. R. Lyon & S. Townsend, 2009. Carbon release and cycling within epilithic biofilms in two contrasting headwater streams. Aquatic Microbial Ecology 55: 285–300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ziegler, S.E., Lyon, D.R. (2010). Factors regulating epilithic biofilm carbon cycling and release with nutrient enrichment in headwater streams. In: Stevenson, R.J., Sabater, S. (eds) Global Change and River Ecosystems—Implications for Structure, Function and Ecosystem Services. Developments in Hydrobiology 215, vol 215. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0608-8_6

Download citation

Publish with us

Policies and ethics