Robust Control of Discrete Linear Repetitive Processes with Parameter Varying Uncertainty

  • Błażej Cichy
  • Krzysztof Gałkowski
  • Eric Rogers
  • Anton Kummert
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 80)

Abstract

Repetitive processes propagate information in two independent directions where the duration of one of these is infinite.

They pose control problems that cannot be solved by application of results for other classes of 2D systems. This paper develops robust controller design algorithms for discrete linear processes based on the poly-quadratic stability that produce less conservative results than currently available alternatives.

Keywords

Material Rolling Repetitive Process Linear Repetitive Process Iterative Learn Control Scheme Discrete Linear Repetitive Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agathoklis P, Foda S (1989) Stability and the matrix Lyapunov equation for delay differential systems. Int J Control 49(2):417–432MathSciNetMATHGoogle Scholar
  2. 2.
    Daafouz J, Bernussou J (2001) Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst Control Lett 43:355–359MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Du C, Xie L (2002) \({H}_{\infty}\) Control and Filtering of Two-dimensional Systems, volume 278 of Lecture notes in control and information sciences. Springer, BerlinGoogle Scholar
  4. 4.
    Gahinet P, Nemirowski A, Laub AJ, Chilali M (1995) LMI Control Toolbox for use with MATLAB. The Mathworks Partner Series. The MathWorks IncGoogle Scholar
  5. 5.
    Gałkowski K, Rogers E, Xu S, Lam J, Owens DH (2002) LMIs—a fundamental tool in analysis and controller design for discrete linear repetitive processes. IEEE Trans Circuits Syst I: Fundam Theory Appl 49(6):768–778CrossRefGoogle Scholar
  6. 6.
    Gałkowski K, Lam J, Rogers E, Xu S, Sulikowski B, Paszke W, Owens DH (2003) LMI based stability analisys and robust controller design for discrete linear repetitive processes. Int J Robust Nonlinear Control 13:1195–1211MATHCrossRefGoogle Scholar
  7. 7.
    Gałkowski K, Rogers E, Paszke W, Owens DH (2003) Linear repetitive process control theory applied to a physical example. Appl Math Comp Sci 13(1):87–99MATHGoogle Scholar
  8. 8.
    Geromel JC, de Oliveira MC (2001) \({H}_{2}\) and \({H}_{\infty}\) robust filtering for convex bounded uncertain systems. IEEE Trans Autom Control 46(1):100–107Google Scholar
  9. 9.
    Geromel JC, de Oliveira MC, Hsu L (1998) LMI characterization of structural and robust stability. Linear Algebra Appl 285:69–80MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hladowski L, Gałkowski K, Cai Z, Rogers E, Freeman CT, Lewin PL (2008) A 2D systems approach to iterative learning control with experimental verification. In: Proceedings of 17th IFAC World Congress, pp 2832–2837Google Scholar
  11. 11.
    Moore KL, Chen YQ, Bahl V (2005) Monotonically convergent iterative learning control for linear discrete-time systems. Automatica 41(9):1529–1537MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programing, vol 13 of SIAM studies in applied mathematics. SIAM, PhiladelphiaGoogle Scholar
  13. 13.
    de Oliveira MC, Bernussou J, Geromel J (1999) A new discrete-time robust stability condition. Syst Control Lett 37:261–265MATHCrossRefGoogle Scholar
  14. 14.
    Paszke W, Gałkowski K, Rogers E, Owens DH (2006) \({H}_{\infty}\) and guaranteed cost control of discrete linear repetitive processes. Linear Algebra Appl 412:93–131MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Peaucelle D, Arzelier D, Bachelier O, Bernussou J (2000) A new robust D-stability condition for polytopic uncertainty. Syst Cont Lett 40:21–30MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Roberts PD (2002) Two-dimensional analysis of an iterative nonlinear optimal control problem. IEEE Trans Circuits Syst I: Fundam Theory Appl 48(6):872–878CrossRefGoogle Scholar
  17. 17.
    Rogers E, Gałkowski K, Owens DH (2007) Control systems theory and applications for linear repetitive processes, volume 349 of Lecture Notes in Control and Information Sciences. Springer, HeidelbergGoogle Scholar
  18. 18.
    de Souza CE, Trofino A (1999) Advances in linear matrix inequality methods in control: advances in design and control. In: Recent advances on linear matrix inequalities in control. Philadelphia. SIAM, pp 175–185Google Scholar
  19. 19.
    Tuan HD, Apkarian P, Nguyen TQ (2002) Robust mixed \({H}_{2}/{H}_{\infty}\) filtering of 2-D systems. IEEE Trans Signal Process 50(7):1759–1771Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Błażej Cichy
    • 1
  • Krzysztof Gałkowski
    • 1
  • Eric Rogers
    • 2
  • Anton Kummert
    • 3
  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GoraPoland
  2. 2.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.Faculty of Electrical, Information and Media EngineeringUniversity of WuppertalWuppertalGermany

Personalised recommendations