Some Inverse Eigenvalue and Pole Placement Problems for Linear and Quadratic Pencils

  • Sylvan Elhay
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 80)


Differential equation models for vibrating systems are associated with matrix eigenvalue problems. Frequently the undamped models lead to problems of the generalized eigenvalue type and damped models lead to problems of the quadratic eigenvalue type. The matrices in these systems are typically real and symmetric and are quite highly structured. The design and stabilisation of systems modelled by these equations (eg., undamped and damped vibrating systems) requires the determination of solutions to the inverse eigenvalue problems which are themselves real, symmetric and possibly have some other structural properties. In this talk we consider some pole assignment problems and inverse spectral problems for generalized and quadratic symmetric pencils, discuss some advances and point to some work that remains to be done.


Eigenvalue Problem Orthogonality Relation Secular Equation Pole Assignment Inverse Eigenvalue Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balas MJ (1982) Trends in large space structure control theory: Fondest dreams, wildest hopes. IEEE Trans Automat Control AC-22:522–535CrossRefGoogle Scholar
  2. 2.
    Bhaya A, Desoer C (1985) On the design of large flexible space structures (lfss). IEEE Trans Automat Control AC-30(11):1118–1120CrossRefGoogle Scholar
  3. 3.
    Boley D, Golub GH (1987) A survey of matrix inverse eigenvalue problems. Inverse Probl. 3:595–622MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Brahma S, Datta BN (2007) A norm-minimizing parametric algorithm for quadratic partial eigenvalue assignment via Sylvester equation. In: Proceedings of European control conference 2007, pp 490–496 (to appear)Google Scholar
  5. 5.
    Brahma S, Datta BN (2007) A Sylvester-equation based approach for minimum norm and robust partial quadratic eigenvalue assignment problems. Mediterranean conference on control and automation. MED ’07, pp 1–6Google Scholar
  6. 6.
    Carvalho J, Datta BN, Lin WW, Wang CS (2006) Symmetry preserving eigenvalue embedding in finite element model updating of vibrating structures. J Sound Vib 290(3–5):839–864MathSciNetCrossRefGoogle Scholar
  7. 7.
    Datta BN (1995) Numerical linear algebra and applications. Brooks/Cole Publishing Company, Pacific GrovezbMATHGoogle Scholar
  8. 8.
    Datta BN, Elhay S, Ram YM (1996) An algorithm for the partial multi-input pole assignment problem of a second-order control system. In: Proceedings of the 35th IEEE conference on decision and control, vol 2. pp 2025–2029 (ISBN: 0780335910 0780335902 0780335929 0780335937)Google Scholar
  9. 9.
    Datta BN, Elhay S, Ram YM (1997) Orthogonality and partial pole assignment for the symmetric definite quadratic pencil. Linear Alg Appl 257:29–48MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Datta BN, Elhay S, Ram YM, Sarkissian D (2000) Partial eigstructure assignemnt for the quadratic pencil. J Sound Vib 230:101–110MathSciNetCrossRefGoogle Scholar
  11. 11.
    Datta BN, Sarkissian D (2001) Theory and computations of some inverse eigenvalue problems for the quadratic pencil. Contemp Math 280:221–240MathSciNetGoogle Scholar
  12. 12.
    Datta BN, Sokolov VO, Sarkissian DR (2008) An optimization procedure for model updating via physical parameters. Mechanical Systems and Signal Processing. (To appear in a special issue on Inverse Problems)Google Scholar
  13. 13.
    de Boor C, Golub GH (1978) The numerically stable reconstruction of a Jacobi matrix from spectral data. Lin Alg Appl 21:245–260zbMATHCrossRefGoogle Scholar
  14. 14.
    Demmel JW (1997) Applied numerical linear algebra. SIAM, PhiladelphiazbMATHGoogle Scholar
  15. 15.
    Dongarra JJ, Bunch JR, Moler CB, Stewart GW (1979) LINPACK User guide. SIAM, PhiladelphiaGoogle Scholar
  16. 16.
    Elhay S (2007) Symmetry preserving partial pole assignment for the standard and the generalized eigenvalue problems. In: Read Wayne, Roberts AJ (eds) Proceedings of the 13th biennial computational techniques and applications conference, CTAC-2006, vol 48. ANZIAM J, pp C264–C279. Accessed 20 July 2007
  17. 17.
    Elhay S, Ram YM (2002) An affine inverse eigenvalue problem. Inverse Probl 18(2):455–466MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Elhay S, Ram YM (2004) Quadratic pencil pole assignment by affine sums. In: Crawfordb J, Roberts AJ, (eds) Proceedings of 11th computational techniques and applications conference CTAC-2003, vol 45. pp. C592–C603. Accessed 4 July 2004
  19. 19.
    Elhay S, Golub GH, Ram YM (2003) On the spectrum of a modified linear pencil. Comput Maths Appl 46:1413–1426MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Friedland S, Nocedal J, Overton ML (1987) The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J Numer Anal 24(3):634–667MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hald O (1976) Inverse eigenvalue problems for Jacobi matrices. Lin Alg Appl 14:63–85MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hochstadt H (1974) On construction of a Jacobi matrix from spectral data. Lin Alg Appl 8:435–446MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Inman D (1989) Vibration with control, measurement and stability. Prentice-Hall, Englewood CilffsGoogle Scholar
  24. 24.
    Kuo YC, Lin WW, Xu SF (2006) Solutions of the partially described inverse quadratic eigenvalue problem. SIAM Matrix Anal Appl 29(1):33–53MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lancaster P, Prells U (2005) Inverse problems for damped vibrating systems. J Sound Vib 283:891–914MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lancaster P, Ye Qiang (1988) Inverse spectral problems for linear and quadratic matrix pencils. Linear Alg Appl 107:293–309MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Laub AJ, Arnold WF (1984) Controllability and observability criteria for multivariate linear second order models. IEEE Trans Automat Control AC-29:163–165MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lowner K (1934) Uber monotone matrixfunktionen. Math Z 38:177–216MathSciNetCrossRefGoogle Scholar
  29. 29.
    Parlett BN (1980) The symmetric eigenvalue problem. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  30. 30.
    Parlett BN, Chen HC (1990) Use of indefinite pencils for computing damped natural modes. Linear Alg Appl 140:53–88MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ram YM, Elhay S (1996) An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application to damped oscillatory systems. SAIM J Appl Math 56(1):232–244MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Ram YM, Elhay S (2000) Pole assignment in vibratory systems by multi input control. J Sound Vib 230:309–321MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ram YM, Elhay S (1998) Constructing the shape of a rod from eigenvalues. Commun Numer Methods Eng 14(7):597–608. ISSN: 1069-8299Google Scholar
  34. 34.
    Starek L, Inman D (1995) A symmetric inverse vibration problem with overdamped modes. J Sound Vib 181(5):893–903CrossRefGoogle Scholar
  35. 35.
    Tissuer F, Meerbergen K (2001) The quadratic eigenvalue problem. SIAM Rev 43(3):235–286MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of AdelaideAdelaideAustralia

Personalised recommendations