Skip to main content

Some Inverse Eigenvalue and Pole Placement Problems for Linear and Quadratic Pencils

  • Chapter
  • First Online:
Numerical Linear Algebra in Signals, Systems and Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 80))

  • 2408 Accesses

Abstract

Differential equation models for vibrating systems are associated with matrix eigenvalue problems. Frequently the undamped models lead to problems of the generalized eigenvalue type and damped models lead to problems of the quadratic eigenvalue type. The matrices in these systems are typically real and symmetric and are quite highly structured. The design and stabilisation of systems modelled by these equations (eg., undamped and damped vibrating systems) requires the determination of solutions to the inverse eigenvalue problems which are themselves real, symmetric and possibly have some other structural properties. In this talk we consider some pole assignment problems and inverse spectral problems for generalized and quadratic symmetric pencils, discuss some advances and point to some work that remains to be done.

Dedicated with friendship and respect to Biswa N. Datta for his contributions to mathematics. S. Elhay 2008

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper a conjugate transpose is denoted by a superscript H while transposition, which is denoted by a superscript T, does not mean conjugate transpose even for complex quantities.

References

  1. Balas MJ (1982) Trends in large space structure control theory: Fondest dreams, wildest hopes. IEEE Trans Automat Control AC-22:522–535

    Article  Google Scholar 

  2. Bhaya A, Desoer C (1985) On the design of large flexible space structures (lfss). IEEE Trans Automat Control AC-30(11):1118–1120

    Article  Google Scholar 

  3. Boley D, Golub GH (1987) A survey of matrix inverse eigenvalue problems. Inverse Probl. 3:595–622

    Article  MathSciNet  MATH  Google Scholar 

  4. Brahma S, Datta BN (2007) A norm-minimizing parametric algorithm for quadratic partial eigenvalue assignment via Sylvester equation. In: Proceedings of European control conference 2007, pp 490–496 (to appear)

    Google Scholar 

  5. Brahma S, Datta BN (2007) A Sylvester-equation based approach for minimum norm and robust partial quadratic eigenvalue assignment problems. Mediterranean conference on control and automation. MED ’07, pp 1–6

    Google Scholar 

  6. Carvalho J, Datta BN, Lin WW, Wang CS (2006) Symmetry preserving eigenvalue embedding in finite element model updating of vibrating structures. J Sound Vib 290(3–5):839–864

    Article  MathSciNet  Google Scholar 

  7. Datta BN (1995) Numerical linear algebra and applications. Brooks/Cole Publishing Company, Pacific Grove

    MATH  Google Scholar 

  8. Datta BN, Elhay S, Ram YM (1996) An algorithm for the partial multi-input pole assignment problem of a second-order control system. In: Proceedings of the 35th IEEE conference on decision and control, vol 2. pp 2025–2029 (ISBN: 0780335910 0780335902 0780335929 0780335937)

    Google Scholar 

  9. Datta BN, Elhay S, Ram YM (1997) Orthogonality and partial pole assignment for the symmetric definite quadratic pencil. Linear Alg Appl 257:29–48

    Article  MathSciNet  MATH  Google Scholar 

  10. Datta BN, Elhay S, Ram YM, Sarkissian D (2000) Partial eigstructure assignemnt for the quadratic pencil. J Sound Vib 230:101–110

    Article  MathSciNet  Google Scholar 

  11. Datta BN, Sarkissian D (2001) Theory and computations of some inverse eigenvalue problems for the quadratic pencil. Contemp Math 280:221–240

    MathSciNet  Google Scholar 

  12. Datta BN, Sokolov VO, Sarkissian DR (2008) An optimization procedure for model updating via physical parameters. Mechanical Systems and Signal Processing. (To appear in a special issue on Inverse Problems)

    Google Scholar 

  13. de Boor C, Golub GH (1978) The numerically stable reconstruction of a Jacobi matrix from spectral data. Lin Alg Appl 21:245–260

    Article  MATH  Google Scholar 

  14. Demmel JW (1997) Applied numerical linear algebra. SIAM, Philadelphia

    MATH  Google Scholar 

  15. Dongarra JJ, Bunch JR, Moler CB, Stewart GW (1979) LINPACK User guide. SIAM, Philadelphia

    Google Scholar 

  16. Elhay S (2007) Symmetry preserving partial pole assignment for the standard and the generalized eigenvalue problems. In: Read Wayne, Roberts AJ (eds) Proceedings of the 13th biennial computational techniques and applications conference, CTAC-2006, vol 48. ANZIAM J, pp C264–C279. http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/106. Accessed 20 July 2007

  17. Elhay S, Ram YM (2002) An affine inverse eigenvalue problem. Inverse Probl 18(2):455–466

    Article  MathSciNet  MATH  Google Scholar 

  18. Elhay S, Ram YM (2004) Quadratic pencil pole assignment by affine sums. In: Crawfordb J, Roberts AJ, (eds) Proceedings of 11th computational techniques and applications conference CTAC-2003, vol 45. pp. C592–C603. http://anziamj.austms.org.au/V45/CTAC2003/Elha. Accessed 4 July 2004

  19. Elhay S, Golub GH, Ram YM (2003) On the spectrum of a modified linear pencil. Comput Maths Appl 46:1413–1426

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedland S, Nocedal J, Overton ML (1987) The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J Numer Anal 24(3):634–667

    Article  MathSciNet  MATH  Google Scholar 

  21. Hald O (1976) Inverse eigenvalue problems for Jacobi matrices. Lin Alg Appl 14:63–85

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochstadt H (1974) On construction of a Jacobi matrix from spectral data. Lin Alg Appl 8:435–446

    Article  MathSciNet  MATH  Google Scholar 

  23. Inman D (1989) Vibration with control, measurement and stability. Prentice-Hall, Englewood Cilffs

    Google Scholar 

  24. Kuo YC, Lin WW, Xu SF (2006) Solutions of the partially described inverse quadratic eigenvalue problem. SIAM Matrix Anal Appl 29(1):33–53

    Article  MathSciNet  MATH  Google Scholar 

  25. Lancaster P, Prells U (2005) Inverse problems for damped vibrating systems. J Sound Vib 283:891–914

    Article  MathSciNet  Google Scholar 

  26. Lancaster P, Ye Qiang (1988) Inverse spectral problems for linear and quadratic matrix pencils. Linear Alg Appl 107:293–309

    Article  MathSciNet  MATH  Google Scholar 

  27. Laub AJ, Arnold WF (1984) Controllability and observability criteria for multivariate linear second order models. IEEE Trans Automat Control AC-29:163–165

    Article  MathSciNet  Google Scholar 

  28. Lowner K (1934) Uber monotone matrixfunktionen. Math Z 38:177–216

    Article  MathSciNet  Google Scholar 

  29. Parlett BN (1980) The symmetric eigenvalue problem. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  30. Parlett BN, Chen HC (1990) Use of indefinite pencils for computing damped natural modes. Linear Alg Appl 140:53–88

    Article  MathSciNet  MATH  Google Scholar 

  31. Ram YM, Elhay S (1996) An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application to damped oscillatory systems. SAIM J Appl Math 56(1):232–244

    Article  MathSciNet  MATH  Google Scholar 

  32. Ram YM, Elhay S (2000) Pole assignment in vibratory systems by multi input control. J Sound Vib 230:309–321

    Article  MathSciNet  Google Scholar 

  33. Ram YM, Elhay S (1998) Constructing the shape of a rod from eigenvalues. Commun Numer Methods Eng 14(7):597–608. ISSN: 1069-8299

    Google Scholar 

  34. Starek L, Inman D (1995) A symmetric inverse vibration problem with overdamped modes. J Sound Vib 181(5):893–903

    Article  Google Scholar 

  35. Tissuer F, Meerbergen K (2001) The quadratic eigenvalue problem. SIAM Rev 43(3):235–286

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvan Elhay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Elhay, S. (2011). Some Inverse Eigenvalue and Pole Placement Problems for Linear and Quadratic Pencils. In: Van Dooren, P., Bhattacharyya, S., Chan, R., Olshevsky, V., Routray, A. (eds) Numerical Linear Algebra in Signals, Systems and Control. Lecture Notes in Electrical Engineering, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0602-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0602-6_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0601-9

  • Online ISBN: 978-94-007-0602-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics