Advertisement

Design Examples

  • Johan HuijsingEmail author
Chapter
  • 3.2k Downloads

Abstract

We have made a classification of Operational Amplifiers in Chap. 6. Nine main topologies have been listed as in a periodic system.

Keywords

Operational Amplifier Output Stage Input Stage Input Pair Input Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 7.1
    J.H. Huijsing, F. Tol, Monolithic operational, amplifier design with improved HF behavior. IEEE J. Solid State Circ. SC-11, 323–328 (1976)CrossRefGoogle Scholar
  2. 7.2
    M. Steyaert, W. Sansen, Opamp design towards maximum gain-bandwidth in Analog Circuit Design, ed. by J.H. Huijsing et al. (Kluwer Academic Publishers, Boston, 1993) pp. 63–85Google Scholar
  3. 7.3
    R. Caprio, Precision differential voltage-current converter. Electron. Lett. 9, 147–148 (1973)CrossRefGoogle Scholar
  4. 7.4
    B.W. Lee, B.J. Shen, A high-speed CMOS amplifier with dynamic frequency compensation. J. Semicustom ICs 8(3), 42–46 (1991), Elsevier Science PublishersGoogle Scholar
  5. 7.5
    L.G.A. Callewaert, W. Sansen, Class AB CMOS amplifiers with high efficiency. IEEE J. Solid State Circ. 25(3), 684–691 (1990)CrossRefGoogle Scholar
  6. 7.6
    K. Bult, G.J.G.M. Geelen, A fast settling CMOS op amp for SC-circuits with 90-dBDC gain. IEEE J. Solid State Circ. 25(3), 1379–1383 (1990)CrossRefGoogle Scholar
  7. 7.7
    R. Hogervorst, et al., A programmable power-efficient 3-V CMOS rail-to-rail opamp with gain boosting for driving heavy resistive loads, in Proceedings IEEE International Symposium on Circuits and Systems, Seattle, USA, 30 Apr–3 May 1995, pp. 1544–1547Google Scholar
  8. 7.8
    P.R. Gray, R.G. Meijer, MOS operational amplifier design – a tutorial overview. IEEE J. Solid State Circ. 17(6), 969–982 (1982)CrossRefGoogle Scholar
  9. 7.9
    G.M. Cotreau Operational amplifiers and voltage regulators. ISSCC 85, in Proceedings vol. 28, THAM 11.3, pp. 138–139Google Scholar
  10. 7.10
    J.E. Solomon, The monolithic Op Amp: A tutorial study. IEEE J. Solid State Circ. 9(6), 314–332 (1974)CrossRefGoogle Scholar
  11. 7.11
    Fairchild Data Sheet of μA 741 opampGoogle Scholar
  12. 7.12
    R.J. Widlar, M. Yamatake, A fast-settling op amp with low supply current. IEEE J. Solid State Circ. 24(3), 796–802 (1989)CrossRefGoogle Scholar
  13. 7.13
    K.J. de Langen, et al., A 1-GHz bipolar class-AB operational amplifier with multipath nested Miller compensation for 76-dB gain. IEEE J. Solid State Circ. 32(4), 488–498 (1997)CrossRefGoogle Scholar
  14. 7.14
    R.J. Widlar, Monolithic op amp with simplified frequency compensation IEEE 15, 58–63 (1967)Google Scholar
  15. 7.15
    Signetics/Philips Data Sheet NE 5534Google Scholar
  16. 7.16
    R.G.H. Eschauzier et al., A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure. IEEE J. Solid State Circ. 27(12), 1710–1717 (1992)CrossRefGoogle Scholar
  17. 7.17
    D.M. Monticelli, A quad CMOS single-supply op amp with rail-to-rail output swing. IEEE J. Solid State Circ. 21(6), 1026–1033 (1986)CrossRefGoogle Scholar
  18. 7.18
    W.C.S. Wu et al., Digital-compatible high-performance operational amplifier with rail-to-rail input and output ranges. IEEE J. Solid State Circ. 29(1), 63–66 (1994)CrossRefGoogle Scholar
  19. 7.19
    R. Hogervorst et al., A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE J. Solid State Circ. 29(12), 1505–1513 (1994)CrossRefGoogle Scholar
  20. 7.20
    R. Hogervorst, J.H. Huijsing, in Design of Low-Voltage Low-Power Operational Amplifier Cells (Kluwer Academic Publishers, Boston, 1996), pp. 35–63, 147–203, 207Google Scholar
  21. 7.21
    K.J. de Langen, et al., Translinear circuits in low-voltage operational amplifiers in Analog Circuit Design, ed. by W. Sansen et al. (Kluwer Academic Publishers, Boston, 1996), pp. 357–386Google Scholar
  22. 7.22
    K.J. de Langen, J.H. Huijsing, Compact low-voltage power efficient operational amplifier cells for VLSI. IEEE J. Solid State Circ. 33(10), pp. 1482–1496 (1998)CrossRefGoogle Scholar
  23. 7.23
    E. Seevinck, et al., A low-distortion output stage with improved stability for monolithic power amplifiers. IEEE J. Solid State Circ. 23(3), 794–801 (1988)CrossRefGoogle Scholar
  24. 7.24
    K.J. de Langen, J.H. Huijsing, Ultimate Low-Voltage Compact Three-Stage Operational Amplifiers Using Nested Miller and Mirrored Nested Miller Compensation (Kluwer Academic Publishers, Boston, 1999), 249ppGoogle Scholar
  25. 7.25
    K.J. de Langen, J.H. Huijsing, Compact Low-Voltage Three Stage BiCMOS Operational Amplifier Cell (Kluwer Academic Publishers, Boston, 1999), 249ppGoogle Scholar
  26. 7.26
    K.J. de Langen, J.H. Huijsing, Compact Low-Voltage and High-Speed CMOS, BICMOS, and Bipolar Operational Amplifiers (Kluwer Academic publishers, Boston, 1999), 249ppGoogle Scholar
  27. 7.27
    J.H. Huijsing, D. Linebarger, Low-voltage operational amplifier with rail-to-rail input and output ranges. IEEE Solid State Circ. 20(6), 1144–1150 (1985)CrossRefGoogle Scholar
  28. 7.28
    M.J. Fonderie, J.H. Huijsing, Design of Low-Voltage Bipolar Operational Amplifiers (Kluwer Academic Publishers, Boston, 1993), 193ppGoogle Scholar
  29. 7.29
    R.J. Widlar, Low-voltage techniques. IEEE J. Solid State Circ. 13(6), 838–846 (1978)CrossRefGoogle Scholar
  30. 7.30
    M.J. Fonderie et al., I-V operational amplifier with rail-to-rail input and output ranges. IEEE J. Solid State Circ. 24(6), 1551–1559 (1989)CrossRefGoogle Scholar
  31. 7.31
    M.J. Fonderie, J.H. Huijsing, Operational amplifier with 1-V rail-to-rail multipath driven output stage. IEEE J. Solid State Circ. 26(12), 1817–1824 (1991)CrossRefGoogle Scholar
  32. 7.32
    R.G.H. Eschauzier et al., A programmable 1.5 V Class-AB operational amplifier with hybrid nested Miller compensation for 120 dB gain and 6 MHz UGF. IEEE J. Solid State Circ. 29(12), 1497–1504 (1994)CrossRefGoogle Scholar
  33. 7.33
    R.G.H. Eschauzier, J.H. Huijsing, Frequency Compensation Techniques for Low-Power Operational Amplifiers (Kluwer Academic Publishers, Boston, 1995), 245ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering Mathematics and Computer Sciences (EEMCS)Delft University of TechnologyDelftNetherlands

Personalised recommendations