Advertisement

Output Stages

  • Johan HuijsingEmail author
Chapter
  • 3.1k Downloads

Abstract

The output stage of an operational amplifier has to provide the load impedance Z L with the desired output voltage V O and current I O , resulting in an output power P O  = V O I O . The main requirements of the output stage are: the ability to deliver negative and positive output currents at a high current efficiency, an output voltage range that efficiently utilizes the range between the negative supply rail voltage and the positive one, a high power efficiency, a low distortion, and good high-frequency (HF) performance.

Keywords

Supply Voltage Output Stage Current Gain Voltage Follower Saturation Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.1
    J.E. Solomon, The monolithic op amp: a tutorial study. IEEE J. Solid-St. Circ. SC-91, 314–332 (1974)CrossRefGoogle Scholar
  2. 5.2
    P.R. Gray, R.G. Meyer, Analyses and Design of Analog Integrated Circuits (Wiley, New York, 1984)Google Scholar
  3. 5.3
    D. Fullager, A new high performance monolithic operational amplifier, Fairchild Semiconductor, Application Briefing, May 1968 (μA 741)Google Scholar
  4. 5.4
    Y. Nishikawa, J.E. Solomon, A general-purpose wideband operational amplifier, IEEE ISSCC 73, Digest of Technical Papers, pp. 144, 145, 212, 213Google Scholar
  5. 5.5
    Data sheet, LH-0021 operational amplifier, National Semiconductor, April 1972Google Scholar
  6. 5.6
    F.L. Long, A dual monolithic power operational amplifier, IEEE ISSCC 1973, Digest of Technical Papers, pp. 178, 179, 221Google Scholar
  7. 5.7
    O.H. Shade Jr., A new generation of MOS/Bipolar operational amplifiers. RCA Rev. 37, 204–224 (1976)Google Scholar
  8. 5.8
    R.J. Widlar, Monolithic op amp with simplified frequency compensation. IEEE 15, 58–63 (1967)Google Scholar
  9. 5.9
    D. Senderowicz, D.A Hodges, P.R. Gray, High performance N-MOS operational amplifier. IEEE J. Solid-St. Circ. SC-13, 760–766 (1978)CrossRefGoogle Scholar
  10. 5.10
    W.C.M. Renirie, K.J. de Langen, J.H. Huijsing, Parallel feedforward class-AB control circuits for low-voltage bipolar rail-to-rail output stages of operational amplifiers. Analog Integr. Circ. S. 8, 37–48 (1995)CrossRefGoogle Scholar
  11. 5.11
    D.M. Montecelli, A quad CMOS single-supply op amp with rail-to-rail output swing. IEEE J. Solid-St. Circ. SC -21, 1026–1034 (1986)CrossRefGoogle Scholar
  12. 5.12
    R. Hogervorst, J.P. Tero, R.G.H. Eschauzier, J.H. Huijsing, A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE J. Solid-St. Circ. 29(12), 1505–1513 (1994)CrossRefGoogle Scholar
  13. 5.13
    P.R. Gray, A 15-W monolithic power operational amplifier. IEEE J. Solid-St. Circ. SC-7, 478–480 (1972)Google Scholar
  14. 5.14
    J.H. Huijsing, F. Tol, Monolithic operational amplifier design with improved HF behaviour. IEEE J. Solid-St. Circ. SC-11, 323–328 (1976)CrossRefGoogle Scholar
  15. 5.15
    E. Seevinck et al., A low-distortion output stage with improved stability for monolithic power amplifiers. IEEE J. Solid-St. Circ. 23(3), 794–801 (1988)CrossRefGoogle Scholar
  16. 5.16
    J.H. Huijsing, D. Linebarger, Low-voltage operational amplifier with rail-to-rail input and output ranges. IEEE J. Solid-St. Circ. SC -20, 1144–1150 (1985)CrossRefGoogle Scholar
  17. 5.17
    J. Fonderie, J.H. Huijsing, Operational amplifier with I-V rail-to-rail multipath-driven output stage. IEEE J. Solid-St. Circ. 26(12), 1817–1824 (1991)CrossRefGoogle Scholar
  18. 5.18
    R. Hogervorst et al., CMOS low-voltage operational amplifiers with constant-gm rail-to-rail input stage. Analog Integr. Circ. S. 5, 135–146 (1994)CrossRefGoogle Scholar
  19. 5.19
    R.G.H. Eschauzier, R. Hogervorst, J.H. Huijsing, A programmable 1.5 V CMOS class-AB operational amplifier with hybrid-nested Miller compensation for 120 dB gain and 6 MHz UGF. IEEE J. Solid-St. Circ. 29(12), 1497–1504 (1994)CrossRefGoogle Scholar
  20. 5.20
    K.J. de Langen, J.H. Huijsing, Compact low-voltage power-efficient operational amplifier cells for VLSI. IEEE J. Solid-St. Circ. 33(10), 1482–1496 (1998)CrossRefGoogle Scholar
  21. 5.21
    I. Getreu, Modelling the Bipolar Transistor (Tektronix, inc., Beaverton, 1976)Google Scholar
  22. 5.22
    K.J. de Langen, J. Fonderie, J.H. Huijsing, Limiting circuits for rail-to-rail output stages of lowvoltage bipolar operational amplifiers, ISCAS 95, Seattle, vol. 3, pp. 1728–1731Google Scholar
  23. 5.23
    K.J. de Langen, J.K. Huijsing, High-frequency and Low-voltage Bipolar, BiCMOS, and CMOS Operational Amplifier Techniques (Kluwer Academic Publishers, Boston, 1999)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering Mathematics and Computer Sciences (EEMCS)Delft University of TechnologyDelftNetherlands

Personalised recommendations