Advertisement

Input Stages

  • Johan HuijsingEmail author
Chapter
  • 3.1k Downloads

Abstract

The input stage of an Operational Amplifier has the task of sensing the differential input voltage. This process is disturbed by interference signals such as: offset, bias, drift, noise and common-mode crosstalk. The modeling of these signals has been given in Chap. 2. The level of these additive interference signals determines the useful sensitivity of the amplifier. The design of the input stage should aim at low values of these interference signals, while the current consumption should be low, and a large portion of the rail-to-rail range should be available for common-mode signals.

Keywords

Input Voltage Bipolar Transistor Input Stage Strong Inversion Input Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 4.1
    Data sheet, Varactor-bridge operational amplifiers, Model 310 and 311 Analog Devices, 1974Google Scholar
  2. 4.2
    E.A. Goldberg, Stabilization of wideband amplifiers for zero and gain, RCA Revue, June 1950, pp. 298Google Scholar
  3. 4.3
    R.J. Veen, Piezojunction effect on a planar n-p-n transistor for transducer aims. Electron. Lett. 15(12), 333–334 (1979)CrossRefGoogle Scholar
  4. 4.4
    R.M. WarnerJr., J.N. Fordemwalt, Integrated circuits, design principles and fabrication in Motorola Series Solid-State Electronics (Mc Graw Hill, New York, 1965)Google Scholar
  5. 4.5
    J.E. Solomon, The monolithic opamp: a tutorial study. IEEE J. Solid-St. Circ. SC-9, 314–332 (1974)CrossRefGoogle Scholar
  6. 4.6
    M.A. Maidigne, A high precision monolithic super beta operational amplifier. IEEE J. Solid-St. Circ. SC-7, 482–483 (1972)Google Scholar
  7. 4.7
    G.R. Wilson, A monolithic junction FET-NPN operation amplifier. IEEE J. Solid-St. Circ. SC-3, 341–348 (1968)CrossRefGoogle Scholar
  8. 4.8
    C.D. Motchenbacher, F.C. Fitchen, in Low-Noise Electronic Design (Wiley, New York, 1973)Google Scholar
  9. 4.9
    R. Blauschild, Differential amplifier circuit with rail-to-rail capability, US Patent 4,532, 479, 30 July 1985Google Scholar
  10. 4.10
    J.H. Huijsing, D. Linebarger, Low-voltage operational amplifier with rail-to-rail input and output ranges. IEEE J. Solid-St. Circ. SC-20(6), 1144–1150 (1985)CrossRefGoogle Scholar
  11. 4.11
    R. Hogervorst, J.P. Tero, R.G.H. Eschauzier, J.H. Huijsing, A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VCSI cell libraries. IEEE J. Solid-St. Circ. 29(12), (1994)Google Scholar
  12. 4.12
    K.J. de Langen, R. Hogervorst, J.H. Huijsing, Translinear circuits in low-voltage operational amplifiers in Analog Circuit Design (Kluwer, Boston, 1996), pp. 357–385Google Scholar
  13. 4.13
    D.L. Knee, C.E. Moore, General-purpose 3 V CMOS operational amplifier with a new constant-transconductance input stage. Hewlett-Packard J. Aug, 114–120 (1997)Google Scholar
  14. 4.14
    R. Hogervorst, J.H. Huijsing, J.P. Tero, Rail-to-rail input stages with g m-control by multiple input pairs, US Patent 5,561,396, Oct 1996Google Scholar
  15. 4.15
    W. Redman-White, A high bandwidth constant g m and slew-rate rail-to-rail CMOS input circuit and its application to analog cells for low-voltage VLSI systems. IEEE J. Solid-St. Circ. 32(5), 701–712 (1997)CrossRefGoogle Scholar
  16. 4.16
    B.J. Blalock, P.E. Allen, G.A. Rincon-Mora, Designing 1-V OpAmps using standard digital CMOS technology. IEEE T. Circuits-II 45(07), 769–781 (1998)CrossRefGoogle Scholar
  17. 4.17
    G. van der Horn, J.H. Huijsing, Extension of the common-mode range of bipolar input stages beyond the supply rails of operational amplifiers and comparators. IEEE J. Solid-St. Circ. 28(7), 750–757 (1993)CrossRefGoogle Scholar
  18. 4.18
    J.F. Witte, K.A.A. Makinwa, J.H. Huijsing, A current feedback instrumentation amplifier with 5 uV offset for bidirectional high-side current sensing, IEEE Solid-State Cirrcuits Conference 2008, San Francisco, Session 3.5, 4–6 Feb 2008Google Scholar
  19. 4.19
    J.F. Witte, K.A.A. Makinwa, J.H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers. (Springer, New York, 2009), 250pp. ISBN:978-1-4020-8163-7CrossRefGoogle Scholar
  20. 4.20
    D.J. Comer, D.T. Comer, Using the weak inversion region to optimize input stage design of CMOS OpAmps. IEEE T. Circuits-II 51(1), 8–14 (2004)CrossRefGoogle Scholar
  21. 4.21
    M.J.M. Pelgrom, H.P. Tuinhout, M. Vertregt, Transistor matching in analog CMOS applications, IEDM 98–915, 1998Google Scholar
  22. 4.22
    K.J. de Langen, J.H. Huijsing, Compact low-voltage PTAT-current source and bandgap-reference circuits, Solid-State Circuits Conference, ESSCIRC ‘98, Proceedings of the 24th European, pp. 109–111, 22–14 Sept 1998Google Scholar
  23. 4.23
    H.C. Nauta, E.H. Nordholt, New class of high-performance PTAT current sources. Electron. Lett. 21, pp. 384–386 (1985)CrossRefGoogle Scholar
  24. 4.24
    R.F. Wassenaar, Analysis of analog CMOS circuits, Fig. 5.9, PhD Thesis, Twente University, 31 Oct 1996Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering Mathematics and Computer Sciences (EEMCS)Delft University of TechnologyDelftNetherlands

Personalised recommendations