Low Noise and Low Offset Operational and Instrumentation Amplifiers

  • Johan HuijsingEmail author


Chapter 10 gives an overview of techniques that achieve low-offset, low-noise, and high accuracy in CMOS operational amplifiers (OA or OpAmp) and instrumentation amplifiers (IA or InstAmp). Auto-zero and chopper techniques are used apart and in combination with each other. Frequency-compensation techniques are described that obtain straight roll-off amplitude characteristics in the multi-path architectures of chopper stabilized amplifiers. Therefore, these amplifiers can be used in standard feedback networks. Offset voltages lower than 1 μV can be achieved.


Clock Frequency Voltage Gain Loop Gain Input Stage Compensation Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 10.1
    J. Huijsing, Operational Amplifiers, Theory and Design (Kluwer Academic Publishers, Dordrecht, 2001), pp. 456, Chapter 1Google Scholar
  2. 10.2
    J. Huijsing, Operational Amplifiers, Theory and Design (Kluwer Academic Publishers, Dordrecht, 2001), pp. 456, Chapter 3Google Scholar
  3. 10.3
    B. van den Dool, J. Huijsing, Indirect current feedback instrumentation amplifier with a common-mode input range that includes the negative rail, IEEE J. Solid-St. Circ. 28(7), 743–749 (1993)CrossRefGoogle Scholar
  4. 10.4
    J. Huijsing, Operational Amplifiers, Theory and Design (Kluwer Academic Publishers, Dordrecht, 2001), pp. 456, Chapter 9Google Scholar
  5. 10.5
    I.E. Opris, G.T.A. Kovacs, A rail-to-rail ping-pong OpAmp, IEEE J. Solid-St. Circ. 31(9), 1320–1324 (1996)CrossRefGoogle Scholar
  6. 10.6
    C. Enz, E. Vittoz, F. Krummenacher, A CMOS chopper amplifier, IEEE J. Solid-St. Circ. 22(3), 708–715 (1987)CrossRefGoogle Scholar
  7. 10.7
    A. Bakker, K. Thiele, J. Huijsing, A CMOS nested chopper instrumentation amplifier with 100 nV offset, IEEE J. Solid-St. Circ. 35(12), 1877–1883 (2000)CrossRefGoogle Scholar
  8. 10.8
    A. Tang, Ping-pong amplifier with auto-zeroing and chopping, U.S. Patent 6,476,671, 11 May 2002. Analog DevicesGoogle Scholar
  9. 10.9
    C. Enz, G. Temes, Circuit techniques for reducing the effect of OpAmp imperfections: Autozeroing, correlated double sampling and Chopper Stabilization, P. IEEE, 84(11), 1584–1614 (1996)CrossRefGoogle Scholar
  10. 10.10
    J. Huijsing, J. Fonderie, B. Shahi, Frequency stabilization of chopper-stabilized amplifiers, U.S. Patent 7,209,000, 24 April 2007Google Scholar
  11. 10.11
    J.F. Witte, K. Makinwa, J. Huijsing, A CMOS chopper offset-stabilized OpAmp, 2006 European Solid–State Circuits Conference, Proceedings, pp. 360–363Google Scholar
  12. 10.12
    R. Burt, J. Zhang, A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path, IEEE J. Solid-St. Circ. 41(12), 2729–2736 (2006)CrossRefGoogle Scholar
  13. 10.13
    J.F. Witte, J. Huijsing, K. Makinwa, A current feedback instrumentation amplifier with 5μV offset for bidirectional high – side current sensing, IEEE Solid–State Circuits Conference 2008, San Francisco, Session 3.5, 4–6 Feb 2008Google Scholar
  14. 10.14
    J. Huijsing, J. Fonderie, Chopper Chopper-Stabilized operational amplifiers and methods, U.S. Patent 6,734,723, 11 May 2004Google Scholar
  15. 10.15
    J. Huijsing, B. Shahi, Chopper Chopper-Stabilized instrumentation and operational amplifiers, U.S. Patent 7,132,883, 7 Nov 2006Google Scholar
  16. 10.16
    J.F. Witte, K.K.A. Makinwa, J.H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers (Springer, Dordrecht, Heidelberg, London, New York, 2009)CrossRefGoogle Scholar
  17. 10.17
    R. Wu, K.A.A. Makinwa, J.H. Huijsing, A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop, IEEE Solid-State Circuits Conference 2009 8–12 Feb 2009, pp. 322–323, 323aGoogle Scholar
  18. 10.18
    J.H. Huijsing, B. Shahi, Accurate voltage to current converters for rail-sensing current-feedback instrumentation amplifiers, U.S. Patent 7,202,738, 10 April 2007Google Scholar
  19. 10.19
    T. Denisson et al., A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials, IEEE J. Solid-St. Circ. 42(12), 2934–2945 (2007)CrossRefGoogle Scholar
  20. 10.20
    Q. Fan et al., A 21 nV/√Hz (10.5 nV/√Hz) chopper-stabilized multi-path current-feedback instrumentation (Operational) amplifier with 2 µV Offset, IEEE Solid–State Circuits Conference 2010, San Francisco, 8–11 Feb 2010Google Scholar
  21. 10.21
    R. Wu, J.H. Huijsing, K.A.A. Makinwa, A current-feedback instrumentation amplifier with a Gain-Error Reduction Loop (GERL) achieving 0.05% gain accuracy and 1ppm/degreeC gain drift, IEEE Solid-State Circuits Conference 2011, San Francisco, Feb 20–23, 13.5Google Scholar
  22. 10.22
    R.E. Boucher, J.H. Huijsing, Auto-gain correction and common mode voltage cancellation in a precision amplifier, U.S. Patent 7,696,817B1, 7 April 2010Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering Mathematics and Computer Sciences (EEMCS)Delft University of TechnologyDelftNetherlands

Personalised recommendations