Two Parameter Engineering Fracture Mechanics: Calculation of the Relevant Parameters and Investigation of Their Influence on the Surface Notch

  • Mohamed Hadj Meliani
  • Zitouni Azari
  • Guy Pluvinage
  • Yu. G. Matvienko
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC, volume 1)


In the present research, T-stress solutions are provided for a U-shaped notch in the case of four specimens: CT, DCB, SENT and Romain Tile (RT). The U-shaped notch is analyzed using the finite element method to determine the stress distribution ahead of the notch tip. In contrast to a crack, it was found that the T-stress is not constant and depends on distance from the notch-tip. To estimate the T-stress in the case of a notch, a novel method, namely, method of line, inspired from the volumetric method approach proposed by Pluvinage has been developed. Thus, the two-parameter approach was adopted for the notch two-parameter fracture mechanics in terms of the notch stress intensity factor Kρc and the effective (average) T-stress, Tef. Fracture toughness transferability curve (Kρc -Tef) of X52 pipe steels has been established.


Fracture Toughness Stress Intensity Factor Plastic Zone Fracture Process Zone Effective Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.L. Williams, On the stress distribution at the base of stationary crack. ASME J. Appl. Mech. 24, 109–14 (1957)Google Scholar
  2. 2.
    J.R. Rice, Limitations to the-scale yielding approximation for crack-tip plasticity. J. Mech. Solids 22, 17–26 (1974)CrossRefGoogle Scholar
  3. 3.
    S.G. Larsson, A.J. Carlsson, Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. J. Mech. Phys. Solids 21, 263–278 (1973)CrossRefGoogle Scholar
  4. 4.
    P.S. Leevers, J.C. Radon, Inherent stress biaxiality in various fracture specimen geometries. Int. J. Fract. 19, 11–25 (1982)CrossRefGoogle Scholar
  5. 5.
    D.E. Richardson, A new biaxial stress fracture criterion, Ph.D. dissertation, Clemson University, 1991Google Scholar
  6. 6.
    Y.J. Chao, X. Zhang, Constraint effect in brittle fracture. 27th National Symposium on Fatigue and fracture, ASTM STP 1296, ed. by R.S. Piascik, J.C. Newman, Jr., D.E. Dowling, American Society for Testing and Materials, Philadelphia, 1997, pp. 41–60Google Scholar
  7. 7.
    Y.J. Chao, S. Liu, B.J. Broviak, Variation of fracture toughness with constraint of PMMA specimens. Proc. ASME-PVP Conf. 393, 113–120 (1999)Google Scholar
  8. 8.
    Y.J. Chao, S. Liu, B.J. Broviak, Brittle fracture: variation of fracture toughness with constraint and crack curving under mode I conditions. Exp. Mech. 41(3), 232–241 (2001)CrossRefGoogle Scholar
  9. 9.
    D.J. Smith, M.R. Ayatollahi, M.J. Pavier, The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading. Fatigue Eng. Mater. Struct. 24(2), 137–150 (2001)CrossRefGoogle Scholar
  10. 10.
    M.R. Ayatollahi, M.J. Pavier, D.J. Smith, Mode I cracks subjected to large T-stresses. Int. J. Fracture 117(2), 159–174 (2002)CrossRefGoogle Scholar
  11. 11.
    ASTM E399, Standard test methods for plane-strain fracture toughness of metallic materials, Annual Book of ASTM Standards, (1997) Vol. 03.01.Google Scholar
  12. 12.
    J.R. Willis, Asymptotic analysis in fracture: an update. Int. J. Fracture 100, 85–103 (1999)CrossRefGoogle Scholar
  13. 13.
    M.G. Dawes, H.G. Pisarski, O.L. Towers, S. Williams, Fracture mechanics measurements of toughness in welded joints, in Fracture Toughness Testing: Methods, Interpretation, and Application (The Welding Institute, Cambridge, 1982), pp. 165–178Google Scholar
  14. 14.
    J.D.S. Sumpter, An experimental investigation of the T stress approach, in Constraint effects Fracture, ASTM STP 1171, ed. by E.M. Hackett, K.-H. Schwalbe, R.H. Dodds (American Society for Testing and Materials, Philadelphia, 1993), pp. 492–502CrossRefGoogle Scholar
  15. 15.
    M.T. Kirk, R.H. Dodds, J and CTOD estimation equations for shallow cracks in single edge notch bend specimens. Shallow crack fracture mechanics, toughness tests and applications. TWI (1992).Google Scholar
  16. 16.
    M.T. Kirk, The second ASTM/ESIS symposium on constraint effects in fracture; an overview. Int. J. Pres. Vessels Piping 64, 259–275 (1995)CrossRefGoogle Scholar
  17. 17.
    T. Nakamura, D.M. Parks, Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral. Int. J. Solids Struct. 29, 1597–1611 (1991)Google Scholar
  18. 18.
    B.A. Bilby, G.E. Cardew, M.R. Goldthorpe, I.C.A. Howard, Finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks, in Size Effects in Fracture (Mechanical Engineering Publications Limited, London, 1986), pp. 37–46Google Scholar
  19. 19.
    C. Betegon, J.W. Hancock, Two-parameter characterization of elastic plastic crack tip fields. ASME J. Appl. Mech. 58, 104–110 (1991)CrossRefGoogle Scholar
  20. 20.
    Z.Z. Du, J.W. Hancock, The effect of non-singular stresses on crack tip constraint. J. Mech. Phys. Solids 39, 555–67 (1991)CrossRefGoogle Scholar
  21. 21.
    B. Cotterell, Notes on the paths and stability of cracks. Int. J. Fracture Mech. 2, 526–533 (1966)Google Scholar
  22. 22.
    B. Cotterell, On fracture path stability in the compact tension test. Int. J. Fracture Mech. 6, 189–192 (1970)Google Scholar
  23. 23.
    S. Melin, Why do cracks avoid each other? Int. J. Fracture 23, 37–45 (1983)CrossRefGoogle Scholar
  24. 24.
    M. Marder, Instability of crack in a heatep strip. Phys. Rev. E. 49(1), 49–53 (1994)CrossRefGoogle Scholar
  25. 25.
    A. Yuse, M. Sano, Transition between crack patterns in quenched glass plates. Nature 362, 329 (1993). LondonCrossRefGoogle Scholar
  26. 26.
    B. Cotterell, J.R. Rice, Slightly curved or kinked cracks. Int. J. Fracture 16, 155–169 (1980)CrossRefGoogle Scholar
  27. 27.
    A.S. Selvarathinam, J.G. Goree, T-stress based fracture model for cracks in isotropic materials. Eng. Fract. Mech. 60, 543–561 (1998)CrossRefGoogle Scholar
  28. 28.
    M. Ramulu, A.S. Kobayashi, Dynamic crack curving: a photoelastic evaluation. Exp. Mech. 23, 1–9 (1983)CrossRefGoogle Scholar
  29. 29.
    K. Ravi-Chandar, W.G. Knauss, An experimental Investigation into Dynamic Fracture: III. On Stready-state Crack Propagation and Crack Branching. Int. J. Fracture. 26, 141–154; 198–200 (1984)Google Scholar
  30. 30.
    W.G. Knauss, K. Ravi-Chandar, Some basic problems in stress wave dominated fracture. Int. J. Fracture 27, 127 (1985)CrossRefGoogle Scholar
  31. 31.
    N.A. Fleck, J.W. Hutchinson, Z. Suo, Crack path selection in a brittle adhesive layer. Int. J. Solids Struct. 27, 1683–1703 (1991)CrossRefGoogle Scholar
  32. 32.
    L. Banks-sills, J. Schwartz, Fracture testing of Brazilian disk sandwich specimens. Int. J. Fracture 118, 191–209 (2002)CrossRefGoogle Scholar
  33. 33.
    M.T. Kirk, K.C. Koppenhoefer, C.F. Shih, Effect of constraint on specimen dimensions needed to obtain structurally relevant toughness measures, in Constraint in Fracture, ASTM STP 1171, ed. by E.M. Hachett, K.-H. Schwalbe, R.H. Dodds (American Society for testing and Materials, Philadelphia, 1993), pp. 79–103CrossRefGoogle Scholar
  34. 34.
    W.A. Sorem, R.H. Dodds, S.T. Rolfe, Effects of crack depth on elastic plastic fracture toughness. Int. J. Fracture 47, 105–126 (1991)CrossRefGoogle Scholar
  35. 35.
    J.W. Hancock, W.G. Reuter, D.M. Parks, Constraint and toughness parameterized by T, in Constraint effects in Fracture, ASTM STP 1171, ed. by E.M. Hackett, K.-H. Schwalbe, R.H. Dodds (American Society for Testing and Materials, Philadelphia, 1993), pp. 21–40CrossRefGoogle Scholar
  36. 36.
    J.D.S. Sumpter, An experimental investigation of the T stresses approach, in Constraint effects in Fracture, ASTM STP 1171, ed. by E.M. Hackett, K.-H. Schwalbe, R.H. Dodds (American Society for Testing and Materials, Philadelphia, 1993), pp. 492–502CrossRefGoogle Scholar
  37. 37.
    S. Ganti, D.M. Parks, Elastic plastic fracture mechanics of strength-mismatch interface cracks, in Recent Advances in Fracture, ed. by R.K. Mahudhara, et al. (The Minerals, Metals and Material Society, London, 1997), pp.13–25Google Scholar
  38. 38.
    Z.L. Zhang, M. Hauge, C. Taulow, The effect of T -stress on the near tip stress field of an elastic-plastic interface crack, in Proceedings of the Ninth International Conference on Fracture, ed. by B.L. Karihaloo, et al., vol 4 (Pergamon, Amsterdam, 1997), pp. 2643–2650Google Scholar
  39. 39.
    X.F. Li, L.R. Xu, T-stresses across static crack kinking. J. Appl. Mech. 74, N2, 181–190 (2007)Google Scholar
  40. 40.
    S. Melin, The influence of the T-Stress on the directional stability of cracks. Int. J. Fracture 114, 259–65 (2002)CrossRefGoogle Scholar
  41. 41.
    D.E. Richardson, J.G. Goree, Experimental verification of a new two parameter fracture model, in Fracture Mechanics: Twenty-Third Symposiums. ASTM STP 1189, 1993, pp. 738–750Google Scholar
  42. 42.
    B. Yang, K. Ravi-Chandar, Evaluation of elastic T-stress by the stress difference method. Eng. Fract. Mech. 64, 589–605 (1999)CrossRefGoogle Scholar
  43. 43.
    Z.B. Kuang, X.P. Xu, Stress and strain fields at the tip of a sharp V-notch in a power-hardening material. Int. J. Fracture 35, 39–50 (1987)Google Scholar
  44. 44.
    M. Yang, S.W. Yu, in: V.V.Panasijuket. al. ed., Advances in fracture resistance in materials, in Proceedings of the International Conference Fracture (ICF9), Turin, 1993, pp. 301–308Google Scholar
  45. 45.
    S. Yang, Y.J. Chao, Asymptotic deformation and stress fields at the tip of a sharp notch in an elastic-plastic material. Int. J. Fracture 54, 211–224 (1992)Google Scholar
  46. 46.
    G. Pluvinage, Fracture and Fatigue Emanating from Stress Concentrators (Kluwer, Dordrecht, 2003)Google Scholar
  47. 47.
    M.H. Meliani, M. Benarous, A. Ghoul, Z. Azari, Volumetric method to understand the effect of T-stress and stress intensity factor in arc of pipe. African Phys. Rev. 1 Special Issue (Microfluidics):0006 12 (2007)Google Scholar
  48. 48.
    M. Hadj Meliani, Z. Azari, G. Pluvinge, Constraint Parameter for a Longitudinal Surface Notch in a Pipe Submitted to Internal Pressure. Key Eng. Mater. 399(Advances in Strength of Materials), 3–11 (2009)CrossRefGoogle Scholar
  49. 49.
    P. Hutar, S. Seitl, Z. Knésl, Quantification of the effect of specimen geometry on the fatigue crack growth response by two-parameter fracture mechanics. Mater. Sci. Eng. A 387–389, 491–494 (2004)Google Scholar
  50. 50.
    S. Stanislav, Z. Knésl, Two parameter fracture mechanics: fatigue crack behavior under mixed mode conditions. Eng. Fract. Mech. 75, 857–865 (2008)CrossRefGoogle Scholar
  51. 51.
    M. Creager, P.C. Paris, Elastic Celd equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fracture 3, 247–251 (1967)Google Scholar
  52. 52.
    M.H. Meliani, Z. Azari, G. Pluvinge, Y. Matvienko, New approach for the T-stress estimation for specimens with a U-notch. New Trends in Fatigue and Fracture, 9th Meeting – NT2F9 –, Failures of materials and structures by fatigue and fracture, Belgrade, 12–14 Oct 2009Google Scholar
  53. 53.
    M.H. Meliani, G. Pluvinage, J. Capelle, Gouge assessment for pipes and associated transferability problems. Eng. Fail. Anal. 17(2010), 1117–1126 (2009)Google Scholar
  54. 54.
    M.H. Meliani, Z. Azari, G. Pluvinge, YuG Matvienko, The effective T-stress estimation and crack paths emanating from U-notches. Eng. Fract. Mech. 77, 1682–1692 (2010)CrossRefGoogle Scholar
  55. 55.
    B. Ozmat, A.S. Argon, D.M. Parks, Growth modes of cracks in creeping type 304 stainless steel. Mech. Mater. 11, 1–17 (1999)CrossRefGoogle Scholar
  56. 56.
    B. Nguyen, P. Onck, E. Van der Giessen, Crack-tip constraint effects on creep fracture. Eng. Fract. Mech. 65, 467–490 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mohamed Hadj Meliani
    • 1
  • Zitouni Azari
    • 2
  • Guy Pluvinage
    • 2
  • Yu. G. Matvienko
    • 3
  1. 1.Laboratoire de Physique Théorique et Physique des Matériaux (LPTPM), FSSIUniversité Hassiba BenboualiChlefAlgeria
  2. 2.Laboratoire de Mécanique, Biomécanique, Polymères et structures, LaBPS-ENIM, île de saulcyUniversité Paul Verlaine de MetzMetzFrance
  3. 3.Laboratory of Modelling Damage and FractureMechanical Engineering Research Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations