Protection for Natural Gas Installations Against the Corrosive Effect of Mercury by a Chemical Nickel Coating

  • C. Fares
  • A. Merati
  • M. A. Belouchrani
  • A. Britah
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC, volume 1)


Aluminium in contact with mercury is degraded by amalgamation. This phenomenon is of interest in LNG (Liquefaction of Natural Gas) operations. Where the mercury – either contained in natural gas or from other sources – may be introduced into the system and come into contact with equipment made of aluminium or aluminium alloys (for example, cryogenic exchangers, LNG storage tanks and cargo tanks). Various methods to remove mercury from gas streams are used to trap mercury upstream installations in question by the means of specific absorbers. However, this trapping is not total, and corrosion by mercury even with the state of traces always threatens. In this context, and for the intention of preserving these installations even in the presence of corrosive metal, we recommended a solution which consists in applying a metal chemical nickel coating using the sodium hypophosphite like reducer.


Hydrogen Embrittlement Nickel Layer Sodium Hypophosphite Liquid Metal Embrittlement Coated Aluminium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.Y. Martin, J. Pigourier, LNG process selection, no easy task, Hydrocarbon Engineering, Axens, 2004Google Scholar
  2. 2.
    J.M. Van de Graaf, P. Barend, Large-capacity LNG trains, the shell parallel mixed refrigerant process, Business Briefing: Instrumentation & Processing, LNG Review, 2005Google Scholar
  3. 3.
    T. Goto, A. Furuta, K. Sato, High efficiency mercury removal absorbent for natural gas liquefaction plant, in 10th international Conference Proceeding, Kuala Lumpur, 1992Google Scholar
  4. 4.
    J.E. Leeper, Mercury corrosion in liquefied gas plants. Energy Process. Can. 73, 46–51 (1981)Google Scholar
  5. 5.
    R. Coade, D. Coldham, The interaction of mercury and aluminium in heat exchangers in a natural gas plants. Int. J. Press. Vessels Pip. 83, 336–342 (2006)CrossRefGoogle Scholar
  6. 6.
    J.J. English, G. Kobrin, R. Serauskas, Liquid mercury embrittlement of aluminium. Materials Selection and Design, 28, 62–63 (1989)Google Scholar
  7. 7.
    L. Lacourcelle, Nickelage chimique; Techniques de l’ingénieur. Edition Technip, traité Matériaux métalliques M5 (M1565), 1–14 (1995)Google Scholar
  8. 8.
    C. Farés, Amélioration du comportement à la corrosion de l’aluminium en présence du mercure par un dépôt de nickel chimique, Master thesis, E.M.P, Alger, 2002Google Scholar
  9. 9.
    M.H. Brown, W.W. Binger, R.H. Brown, Mercury and its components, a corrosion hazard, in 8th Annual Conference of National Association of Corrosion Engineers, Glaveston, 1952Google Scholar
  10. 10.
    F.M. Beard, R.A. Hine, The effect of allowing constituents in aluminium of corrosive attack by mercury. Br. Corros. J. 1, 98–101 (1965)Google Scholar
  11. 11.
    R.C. Plumb, M.H. Brown, J.E. Lewis, A radiochemical tracer investigation of the role of mercury in the corrosion of aluminum, Corrosion, 11 (N°6) (1956), p. 277t Google Scholar
  12. 12.
    E.G. Meek, Aluminium corrosion, Science Note SSR, June 1987Google Scholar
  13. 13.
    M.R. Pinnel, J.E. Bennett, Reactions between mercury-wetted aluminum and water. J. Mater. Sci. 8, 1189 (1973)CrossRefGoogle Scholar
  14. 14.
    M.R. Pinnel, J.E. Bennett, Voluminous oxidation of aluminum by continuous dissolution in a wetting mercury film. J. Mater. Sci. 7, 1016 (1972)CrossRefGoogle Scholar
  15. 15.
    J.J. Krupowicz, D.S. Hampton, Cracking of aluminium alloy 5083 in mercuric salt solutions, 1989Google Scholar
  16. 16.
    W.B. Brooks, The hazards of mercury to metals and alloys in process industries and some little known sources of mercury contamination, Corrosion; 24 N° 10, (1968) p. 335Google Scholar
  17. 17.
    S.M. Wilhelm, A. McArthur, R.D. Kane, Methods to combat liquid metal embrittlement in cryogenic aluminum heat exchangers, in Proceedings of the 73rd GPA Annual Convention, New Orleans, March 1994, pp. 62–71Google Scholar
  18. 18.
    P.J.L. Fernandes, R.E. Clegg, D.R.H. Jones, Failure by liquid metal induced embrittlement. Eng. Fail. Anal. 1(1), 51–63 (1994)CrossRefGoogle Scholar
  19. 19.
    J.J. English, D.J Duquette, Mercury liquid embrittlement failure of 5083-0 aluminum alloy piping, Handbook of Case Histories in Failure Analysis, vol. 2, 1993, pp. 207–213Google Scholar
  20. 20.
    S.P. Lynch, Metal-induced embrittlement of materials. Mater. Charact. 28, 279–289 (1992)CrossRefGoogle Scholar
  21. 21.
    P. Gordon, Metal-induced embrittlement of metals-an evaluation of embrittler transport mechanisms. Metall. Trans. A 9A, 267–273 (1978)Google Scholar
  22. 22.
    L. Lacourcelle, Revêtements métalliques par voie électrolytique. Techniques de l’Ingénieur M5, 1550 (1990). Edition Technip Google Scholar
  23. 23.
    Y. Badé, Revêtement métallique par voie électrolytique, Nickelage; Techniques de l’Ingénieur, Edition Technip M5 (M1610), (2000) p. 1–14Google Scholar
  24. 24.
    J.W. Oswald, Dépôts électrolytiques de nickel épais, Centre d’Information de Nickel Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. Fares
    • 1
    • 2
  • A. Merati
    • 3
  • M. A. Belouchrani
    • 4
  • A. Britah
    • 4
  1. 1.Laboratoire de Mécanique Avancée (LMA), Faculté GM&GPl’USTHBAlgerAlgeria
  2. 2.AlgerAlgeria
  3. 3.Laboratoire d’Electrochimie et CorrosionE.M.PAlgerAlgeria
  4. 4.Laboratoire de Génie des MatériauxE.M.PAlgerAlgeria

Personalised recommendations