Skip to main content

Human Tactile Sensing

  • Chapter
Book cover Robotic Tactile Sensing

Abstract

Designing a meaningful robotic tactile sensing system requires a broad, but integrated, knowledge of how tactile information is encoded and transmitted at various stages of interaction via touch. In this context, various scientific studies on human sense of touch can provide a good starting point. The sense of touch in humans comprises of two main submodalities, i.e. “cutaneous” and “kinesthetic”, characterized on the basis of the site of sensory inputs. Much of the real world interactions involve both cutaneous/tactile and kinesthetic submodalities. This chapter focuses on the cutaneous/tactile component of human sense of touch. A brief discussion on the spatial properties of the human skin and its receptors is presented. The discussion is followed by the role and perceptual importance of the cutaneous/tactile sense in humans. This chapter has been included with an aim to understand if (and how) human tactile sensing can be the basis for the robotic tactile sensing. The chapter concludes with a set of design criteria, derived from the discussion on human cutaneous sensing, for robotic tactile system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The voltage pulses generated when the stimulus is greater than a threshold.

  2. 2.

    Both FA and SA are further classified as type I (FA-I, SA-I) and type II (FA-II, SA-II).

  3. 3.

    Two points threshold method involves measurement of the minimal interstimulus distance required to perceive two simultaneously applied stimuli as distinct (the indentations of the points of a pair of caliper, for example).

  4. 4.

    In orientation grating method, subjects are presented with a grating in one of two orientations on the skin. For example, on the fingerpad the gratings are presented in either a proximal–distal orientation or at right angles to that in the lateral–medial orientation. The subject indicates the orientation. The grating orientation task relies on devising stimuli that are identical except for the orientation in which they are presented to the skin.

  5. 5.

    For hearing the threshold is about 0.01 ms and for vision it is about 25 ms [33].

  6. 6.

    The early processed tactile signals are directly related to stimuli, whereas later processing stages are progressively more abstract.

  7. 7.

    The levels at which contact forces should be resolved can also be obtained by the knowledge of the elasticity of the fingertip skin and minimum detectable skin displacement. Given that the elasticity of fingertip skin is roughly of the order of 103 N/m and the detectable skin displacement is of the order of 10−6 m (Fig. 3.2), one could conclude that the sensor should resolve 10−3 N.

References

  1. T.D. Crouch, Wings: A History of Aviation from Kites to the Space Age (Norton, New York, 2003)

    Google Scholar 

  2. R. Pfeifer, M. Lungarella, F. Lida, Self-organization, embodiment and biologically inspired robotics. Science 318, 1088–1093 (2007)

    Article  Google Scholar 

  3. G. Bekey, Autonomous Robots: From Biological Inspiration to Implementation and Control (MIT Press, Cambridge, 2005)

    Google Scholar 

  4. T.J. Prescott, P. Redgrave, K. Gurney, Layered control architectures in robots and vertebrates. Adapt. Behav. 7(1), 99–127 (1999)

    Article  Google Scholar 

  5. R.A. Brooks, New approaches to robotics. Science 253, 1227–1232 (1991)

    Article  Google Scholar 

  6. J.M. Wolfe, K.R. Kluender, D.M. Levi, L.M. Bartoshuk, R.S. Herz, R.L. Klatzky, S.J. Lederman, Sensation and Perception (Sinauer, Sunderland, 2006)

    Google Scholar 

  7. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, 4th edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  8. R.L. Klatzky, S.J. Lederman, Touch, in Experimental Psychology, ed. by A.F. Healy, R.W. Proctor. Handbook of Psychology, vol. 4 (Wiley, New York, 2003), pp. 147–176

    Google Scholar 

  9. R.S. Johannson, G. Westling, Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56, 550–564 (1984)

    Google Scholar 

  10. D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, A.-S. LaMantia, J.O. McNamara, L.E. White, Neuroscience, 4th edn. (Sinauer, Sunderland, 2008)

    Google Scholar 

  11. N. Cauna, Nature and functions of the papillary ridges of the digital skin. Anat. Rec. 119, 449–468 (1954)

    Article  Google Scholar 

  12. G.J. Gerling, G.W. Thomas, The effect of fingertip microstructures on tactile edge perception, in First Joint Eurohaptics Conference on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2005), pp. 63–72

    Chapter  Google Scholar 

  13. T.A. Quilliam, The structure of fingerprint skin, in Active Touch: The Mechanisms of Recognition of Objects by Manipulation, ed. by G. Gordon (Pergamon, Elmsdorf, 1978), pp. 1–18

    Google Scholar 

  14. R.S. Johannson, A.B. Vallbo, Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286, 283–300 (1979)

    Google Scholar 

  15. J.R. Phillips, K.O. Johnson, Tactile spatial resolution III—a continuum mechanics model of skin predicting mechanoreceptors responses to bars, edges and gratings. J. Neurophysiol. 46(6), 1204–1255 (1981)

    Google Scholar 

  16. R.S. Johannson, U. Landstrom, R. Lundstorm, Responses of mechanoreceptors afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res. 244, 17–25 (1982)

    Article  Google Scholar 

  17. A.B. Valbo, R.S. Johannson, Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3, 3–14 (1984)

    Google Scholar 

  18. R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  19. R.S. Johannson, J.R. Flanagan, Tactile sensory control of object manipulation in humans, in Somatosensation, ed. by E. Gardner, J.H. Kaas. The Senses: A Comprehensive Reference, vol. 6 (Academic Press, San Diego, 2008), pp. 67–86

    Google Scholar 

  20. J.M. Loomis, S.J. Lederman, Tactual perception, in Handbook of Perception and Human Performances, vol. 2 (Wiley, New York, 1986), p. 2

    Google Scholar 

  21. S. Weinstein, Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality, in The Skin Senses (Thomas, Springfield, 1968)

    Google Scholar 

  22. K.O. Johanson, J.R. Phillips, Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. J. Neurophysiol. 46, 1177–1192 (1981)

    Google Scholar 

  23. J.C. Craig, Grating orientation as a measure of tactile spatial acuity. Somatosens. Motor Res. 16(3), 197–206 (1999)

    Article  Google Scholar 

  24. J.C. Craig, K.B. Lyle, A comparison of tactile spatial sensitivity on the palm and fingerpad. Percept. Psychophys. 63(2), 337–347 (2001)

    Article  Google Scholar 

  25. J.M. Loomis, On the tangibility of letters and braille. Percept. Psychophys. 29, 37–46 (1981)

    Article  Google Scholar 

  26. J.C. Craig, J.M. Kisner, Factors affecting tactile spatial acuity. Somatosens. Motor Res. 15(1), 29–45 (1998)

    Article  Google Scholar 

  27. S.J. Bensmaia, J.C. Craig, K.O. Johanson, Temporal factors in tactile spatial acuity: evidence for RA interference in fine spatial processing. J. Neurophysiol. 95, 1783–1791 (2006)

    Article  Google Scholar 

  28. J.B.F. Van Erp, Touch down: vibrotactile spatial acuity on the torso: effect of location and timing parameters, in First Joint Eurohaptics Conference on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2005)

    Google Scholar 

  29. J. Scheibert, S. Leurent, A. Prevost, G. Debregeas, The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009)

    Article  Google Scholar 

  30. R.S. Dahiya, M. Gori, Probing with and into fingerprints. J. Neurophysiol. 104, 1–3 (2010)

    Article  Google Scholar 

  31. S.J. Lederman, Heightening tactile impressions of surface texture, in Active Touch: The Mechanisms of Recognition of Objects by Manipulation, ed. by G. Gordon (Pergamon, Oxford, 1978), pp. 205–214

    Google Scholar 

  32. G.A. Gescheider, Temporal relation in cutaneous stimulation, in Cutaneous Communication Systems and Devices, ed. by G. Gordon (Psychonomic Society, Austin, 1974), pp. 33–37

    Google Scholar 

  33. C.E. Sherrick, R.W. Cholewiak, Cutaneous sensitivity, in Handbook of Perception and Human Performance, ed. by K. Boff, L. Kaufman, J.L. Thomas (Wiley, New York, 1986), pp. 12-1–12-58

    Google Scholar 

  34. E.C. Lechelt, Temporal numerosity discrimination—intermodal comparisons revisited. Br. J. Psychol. 66, 101–108 (1975)

    Article  Google Scholar 

  35. J.C. Craig, X. Baihua, Temporal order and tactile patterns. Percept. Psychophys. 47(1), 22–34 (1990)

    Article  Google Scholar 

  36. L.A. Jones, S.J. Lederman, Tactile sensing, in Human Hand Function (Oxford University Press, Cambridge, 2006), pp. 44–74

    Chapter  Google Scholar 

  37. R.S. Johannson, A.B. Vallbo, Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res. 184, 353–366 (1980)

    Article  Google Scholar 

  38. R.S. Johannson, A.B. Vallbo, G. Westling, Thresholds of mechanosensitive afferents in the human hand as measured with Von Frey hairs. Brain Res. 184, 343–351 (1980)

    Article  Google Scholar 

  39. J.C. Stevens, K.K. Choo, Temperature sensitivity of the body surface over the life span. Somatosens. Motor Res. 15, 13–28 (1998)

    Article  Google Scholar 

  40. R.S. Johannson, I. Birznieks, First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7(2), 170–177 (2004)

    Article  Google Scholar 

  41. P. Jenmalm, I. Birznieks, A.W. Goodwin, R.S. Johannson, Influence of object shape on responses of human tactile afferents under conditions characteristics of manipulation. Eur. J. Neurosci. 18, 164–176 (2003)

    Article  Google Scholar 

  42. A. Berthoz, The Brain’s Sense of Movement (Harvard University Press, Cambridge, 2000)

    Google Scholar 

  43. S.S. Hsiao, J. Lane, P. Fitzgerald, Representation of orientation in the somatosensory system. Behav. Brain Res. 135, 93–103 (2002)

    Article  Google Scholar 

  44. B.E. Stein, M.A. Meredith, The Merging of the Senses (MIT Press, Cambridge, 1993)

    Google Scholar 

  45. I. Birznieks, P. Jenmalm, A.W. Goodwin, R.S. Johannson, Encoding of direction of fingertip forces by human tactile afferents. J. Neurosci. 21(20), 8222–8237 (2001)

    Google Scholar 

  46. R.H. LaMotte, M.A. Srinivasan, Tactile discrimination of shape: responses of slowly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad. J. Neurosci. 7(6), 1655–1671 (1987)

    Google Scholar 

  47. R.H. LaMotte, M.A. Srinivasan, Tactile discrimination of shape: responses of rapidly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad. J. Neurosci. 7(6), 1672–1681 (1987)

    Google Scholar 

  48. M.A. Srinivasan, R.H. LaMotte, Tactile discrimination of shape: responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad. J. Neurosci. 7(6), 1682–1697 (1987)

    Google Scholar 

  49. A.W. Goodwin, V.G. Macefield, J.W. Bisley, Encoding of object curvature by tactile afferents from human fingers. J. Neurophysiol. 78(6), 2881–2888 (1997)

    Google Scholar 

  50. P.S. Khalsa, R.M. Friedman, M.A. Srinivasan, R.H. LaMotte, Encoding of shape and orientation of objects indented into the monkey fingerpad by populations of slowly and rapidly adapting mechanoreceptors. J. Neurophysiol. 79, 3238–3251 (1998)

    Google Scholar 

  51. S.J. Lederman, D.T. Pawluk, Lessons from the study of biological touch for robotic tactile sensing, in Advanced Tactile Sensing for Robots—Robotics and Automated Systems, ed. by H.R. Nicholls, vol. 5 (World Scientific, Singapore, 1992), pp. 151–192

    Chapter  Google Scholar 

  52. C.E. Connor, K.O. Johnson, Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. J. Neurosci. 12(9), 3414–3426 (1992)

    Google Scholar 

  53. D.T. Blake, S.S. Hsiao, K.O. Johnson, Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 17(19), 7480–7489 (1997)

    Google Scholar 

  54. E.M. Meftah, L. Belingard, C.E. Chapman, Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp. Brain Res. 132, 351–361 (2000)

    Article  Google Scholar 

  55. C.J. Cascio, K. Sathian, Temporal cues contribute to tactile perception of roughness. J. Neurosci. 21(14), 5289–5296 (2001)

    Google Scholar 

  56. J.W. Morley, A.W. Goodwin, I. Darian-Smith, Tactile discrimination of gratings. Exp. Brain Res. 49, 291–299 (1983)

    Article  Google Scholar 

  57. S.J. Lederman, The perception of surface roughness by active and passive touch. Bull. Psychon. Soc. 18, 252–255 (1983)

    Google Scholar 

  58. A.M. Smith, G. Gosselin, B. Houde, Deployment of fingertip forces in tactile exploration. Exp. Brain Res. 147, 209–218 (2002)

    Article  Google Scholar 

  59. A.M. Smith, C.E. Chapman, M. Deslandes, J.S. Langlais, M.P. Thibodeau, Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144, 211–223 (2002)

    Article  Google Scholar 

  60. M.A. Srinivasan, R.H. LaMotte, Tactual discrimination of softness. J. Neurophysiol. 73, 88–101 (1995)

    Google Scholar 

  61. K.O. Johanson, S.S. Hsiao, Neural mechanisms of tactile form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992)

    Article  Google Scholar 

  62. F. Binkofski, E. Kunesch, J. Classen, R.J. Seitz, H.J. Freund, Tactile apraxia—unimodal apractic disorder of tactile object recognition associated with parietal lobe lesions. Brain 124, 132–144 (2001)

    Article  Google Scholar 

  63. A. Bodegård, A. Ledberg, S. Geyer, E. Naito, K. Zilles, P.E. Roland, Object shape differences reflected by somatosensory cortical activation in human. J. Neurosci. 20(RC51), 1–5 (2000)

    Google Scholar 

  64. R.D. Howe, M.R. Cutkosky, Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans. Robot. Autom. 9(2), 140–151 (1993)

    Article  Google Scholar 

  65. L.A. Jones, E. Piateski, Contribution of tactile feedback from the hand to the perception of force. Exp. Brain Res. 168, 298–302 (2006)

    Article  Google Scholar 

  66. S.L. Kilbreath, K. Refshauge, S.C. Gandevia, Differential control of digits in human hand: evidence from digital anaesthesia and weight matching. Exp. Brain Res. 117, 507–511 (1997)

    Article  Google Scholar 

  67. A.S. Augurelle, A.M. Smith, T. Lejeune, J.L. Thonnard, Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J. Neurophysiol. 89, 665–671 (2003)

    Article  Google Scholar 

  68. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994)

    MATH  Google Scholar 

  69. G. Cadoret, A.M. Smith, Friction not texture, dictates grip forces during object manipulation. J. Neurophysiol. 75, 1963–1969 (1996)

    Google Scholar 

  70. J.R. Flanagan, A.M. Wing, Modulation of grip force with load force during point-to-point arm movements. Exp. Brain Res. 95, 131–143 (1993)

    Article  Google Scholar 

  71. E. Oliver, M. Davare, M. Andres, L. Fadiga, Precision grasping in humans: from motor control to cognition. Curr. Opin. Neurobiol. 17, 644–648 (2007)

    Article  Google Scholar 

  72. R.S. Johannson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev., Neurosci. 10, 345–359 (2009)

    Article  Google Scholar 

  73. M.S.A. Graziano, M.M. Botvinick, How the brain represents the body: insights from neurophysiology and psychology, in Common Mechanisms in Perception and Action: Attention and Performance, ed. by W. Prinz, B. Hommel (Oxford University Press, Oxford, 2002), pp. 136–157

    Google Scholar 

  74. M. Gentilucci, I. Toni, E. Daprati, M. Gangitano, Tactile input of the hand and the control of reaching to grasp movements. Exp. Brain Res. 114, 130–137 (1997)

    Article  Google Scholar 

  75. W. Goebl, C. Palmer, Tactile feedback and timing accuracy in piano performance. Exp. Brain Res. 186, 471–479 (2008)

    Article  Google Scholar 

  76. J. Voisin, Y. Lamarre, C.E. Chapman, Haptic discrimination of object shape in humans: contribution of cutaneous and proprioceptive inputs. Exp. Brain Res. 145, 251–260 (2002)

    Article  Google Scholar 

  77. S. Guest, C. Catmur, D. Lloyd, C. Spence, Audiotactile interactions in roughness perception. Exp. Brain Res. 146, 161–171 (2002)

    Article  Google Scholar 

  78. M.O. Ernst, M.S. Banks, Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)

    Article  Google Scholar 

  79. H.B. Helbig, M.O. Ernst, Optimal integration of shape information from vision and touch. Exp. Brain Res. 179, 595–606 (2007)

    Article  Google Scholar 

  80. R.J. Van Beers, D.M. Wolpert, When feeling is more important than seeing in sensorimotor adaptation. Curr. Biol. 12, 834–837 (2002)

    Article  Google Scholar 

  81. A.M. Gordon, H. Forssberg, R.S. Johansson, G. Westling, Integration of sensory information during the programming of precision grip: comments on the contributions of size cues. Exp. Brain Res. 85, 226–229 (1991)

    Article  Google Scholar 

  82. H.R. Schiffman, Sensation and Perception—An Integrated Approach (Wiley, New York, 2001)

    Google Scholar 

  83. C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Leveque, P.G. Agache, Age-related mechanical properties of human skin—an in vivo study. J. Invest. Dermatol. 93, 353–357 (1989)

    Article  Google Scholar 

  84. G.J. Gerling, G.W. Thomas, Fingerprint lines may not directly affect SA-I mechanoreceptor response. Somatosens. Motor Res. 25(1), 61–76 (2008)

    Article  Google Scholar 

  85. R.S. Johannson, R.H. LaMotte, Tactile detection thresholds for a single asperity on an otherwise smooth surface. Somatosens. Res. 1(1), 21–31 (1983)

    Article  Google Scholar 

  86. T. Maeno, K. Kobayashi, N. Yamazaki, Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. 41(1,C), 94–100 (1998)

    Article  Google Scholar 

  87. K. Dandekar, B.I. Raju, M.A. Srinivasan, 3-D finite-element-models of human and monkey fingertips to investigate the mechanics of tactile sensing. J. Biomech. Eng. 125(5), 682–691 (2003)

    Article  Google Scholar 

  88. V.B. Mountcastle, The Sensory Hand: Neural Mechanisms of Somatic Sensation (Harvard University Press, Cambridge, 2005)

    Google Scholar 

  89. M. Pare, C. Behets, O. Cornu, Paucity of presumptive Ruffini corpuscles in the index finger pad of humans. J. Comp. Neurol. 456, 260–266 (2003)

    Article  Google Scholar 

  90. R.D. Howe, Tactile sensing and control of robotics manipulation. Adv. Robot. 8(3), 245–261 (1993)

    Article  MathSciNet  Google Scholar 

  91. M.H. Lee, H.R. Nicholls, Tactile sensing for mechatronics—a state of the art survey. Mechatronics 9, 1–31 (1999)

    Article  Google Scholar 

  92. P. Dario, D. de Rossi, Tactile sensors and gripping challenge. IEEE Spectr. 22(8), 46–52 (1985)

    Google Scholar 

  93. J. Dargahi, S. Najarian, Human tactile perception as a standard for artificial tactile sensing—a review. Int. J. Med. Robot. Comput. Assist. Surg. 1(1), 23–35 (2004)

    Article  Google Scholar 

  94. B.V. Jayawant, J.D.M. Watson, Array sensor for tactile sensing in robotic applications, in IEE Colloquium on Solid State and Smart Sensors (1988), pp. 8/1–8/4

    Google Scholar 

  95. M. Shikida, T. Shimizu, K. Sato, K. Itoigawa, Active tactile sensor for detecting contact force and hardness of an object. Sens. Actuators A, Phys. 103, 213–218 (2003)

    Article  Google Scholar 

  96. F. Castelli, An integrated tactile-thermal robot sensor with capacitive tactile array. IEEE Trans. Ind. Appl. 38(1), 85–90 (2002)

    Article  Google Scholar 

  97. P. Dario, Tactile sensing for robots: present and future, in Robotics Review 1, ed. by O. Khatib, J. Craig, T. Lozano-Perez (MIT Press, Cambridge, 1989), pp. 133–146

    Google Scholar 

  98. R.S. Fearing, J.M. Hollerbach, Basic solid mechanics for tactile sensing, in IEEE International Conference on Robotics and Automation, vol. 1 (1984), pp. 266–275

    Google Scholar 

  99. R.S. Dahiya, A. Adami, L. Lorenzelli, Fabrication of single crystal silicon mirco-/nanowires and transferring them to flexible substrates, in The 37th International Conference on Micro and Nano Engineering (MNE 2011), Berlin, Germany (2011), pp. 1–2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahiya, R.S., Valle, M. (2013). Human Tactile Sensing. In: Robotic Tactile Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0579-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0579-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0578-4

  • Online ISBN: 978-94-007-0579-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics