Skip to main content

Touch Sensing—Why and Where?

  • Chapter
Robotic Tactile Sensing

Abstract

Sensory information from several sensory modalities (e.g. touch, vision, hearing etc.) is needed to interact and perceive the environment. The sensory modality discussed in this book is the ‘sense of touch’—more specifically the ‘tactile sensing’. The touch sensing is different from sensory modalities such as vision, and hearing, as it is distributed over the body and involves physical contacts with the objects. This chapter present few examples that highlight the importance of the ‘sense of touch’ and the impact its ‘effective’ introduction will have on the overall robotics research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mechanoreceptors are the specialized nerve endings that respond to mechanical stimulation. For details, refer to Chap. 3.

References

  1. M.O. Ernst, M.S. Banks, Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)

    Article  Google Scholar 

  2. M. Prats, P. Sanz, A. del Pobil, Vision–tactile–force integration and robot physical interaction, in IEEE International Conference on Robotics and Automation, Kobe, Japan (2009), pp. 3975–3980

    Chapter  Google Scholar 

  3. G. Westling, R.S. Johannson, Factors influencing the force control during precision grip. Exp. Brain Res. 53, 277–284 (1984)

    Article  Google Scholar 

  4. J.B.F. Van Erp, A.H.C. Van Veen Hendrik, Touch down: the effect of artificial touch cues on orientation in microgravity. Neurosci. Lett. 404, 78–82 (2006)

    Article  Google Scholar 

  5. J. Cole, Pride and a Daily Marathon (MIT Press, Cambridge, 1995)

    Google Scholar 

  6. M. Shikida, T. Shimizu, K. Sato, K. Itoigawa, Active tactile sensor for detecting contact force and hardness of an object. Sens. Actuators A, Phys. 103, 213–218 (2003)

    Article  Google Scholar 

  7. J.-i. Yuji, C. Sonoda, A PVDF tactile sensor for static contact force and contact temperature, in IEEE Sensors, Korea (2006), pp. 738–741

    Google Scholar 

  8. M.R. Cutkosky, R.D. Howe, W. Provancher, Force and tactile sensors, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, 2008), pp. 455–476

    Chapter  Google Scholar 

  9. A. Morales, M. Prats, P. Sanz, A.P. Pobil, An experiment in the use of manipulation primitives and tactile perception for reactive grasping, in Robotics Science and Systems, Workshop on Robot Manipulation Sensing and Adapting to the Real World, Atlanta, USA (2007)

    Google Scholar 

  10. D. Prattichizzo, J.C. Trinkle, Grasping, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, 2008), pp. 671–698

    Chapter  Google Scholar 

  11. R.S. Fearing, Tactile sensing mechanisms. Int. J. Robot. Res. 9(3), 3–23 (1990)

    Article  Google Scholar 

  12. P. Martinet, J. Gallice, Position based visual servoing using a non-linear approach, in IEEE/RSJ International Conference on Intelligent Robots & Systems (1999), pp. 531–535

    Google Scholar 

  13. M. Saedan, M.H. Ang Jr., 3D vision-based control on an industrial robot, in IASTED International Conference on Robotics & Applications, Florida, USA (2001), pp. 152–157

    Google Scholar 

  14. A. Clerentin, C. Pegard, C. Drocourt, Environment exploration using an active vision sensor, in IEEE/RSJ International Conference on Intelligent Robots & Systems, vol. 3 (1999), pp. 1525–1530

    Google Scholar 

  15. E. Cheung, V.L. Lumelsky, Proximity sensing in robot manipulation motion planning: system & implementation issues. IEEE Trans. Robot. Autom. 5(6), 740–751 (1989)

    Article  Google Scholar 

  16. M.J. Schlemmer, G. Biegelbauer, M. Vincze, Rethinking robot vision—combining shape and appearance. Int. J. Adv. Robot. Syst. 4(3), 259–270 (2007)

    Google Scholar 

  17. T. Mukai, M. Onishi, T. Odashima, S. Hirano, Z. Luo, Development of the tactile sensor system of a human-interactive robot “RI-MAN”. IEEE Trans. Robot. 24(2), 505–512 (2008)

    Article  Google Scholar 

  18. M.H. Lee, H.R. Nicholls, Tactile sensing for mechatronics—a state of the art survey. Mechatronics 9, 1–31 (1999)

    Article  Google Scholar 

  19. P. Puangmali, K. Althoefer, L.D. Seneviratne, D. Murphy, P. Dasgupta, State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sens. J. 8, 371–381 (2008)

    Article  Google Scholar 

  20. J. Dargahi, S. Najarian, Advances in tactile sensors design/manufacturing and its impact on robotics applications—a review. Ind. Robot 32, 268–281 (2005)

    Article  Google Scholar 

  21. R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010)

    Article  Google Scholar 

  22. U. Voges, Technology in laparoscopy—what to expect in the future. Urologe Ausgabe (a) 35, 208–214 (1996)

    Google Scholar 

  23. B.D. Argall, A.G. Billard, A survey of tactile human–robot interactions. Robot. Auton. Syst. 58, 1159–1176 (2010)

    Article  Google Scholar 

  24. J.W. Jung, C.Y. Lee, J.J. Lee, Z.Z. Bien, User intention recognition for intelligent bed robot system, in The 8th International Conference on Rehabilitation Robotics, Daejeon, Korea (2003), pp. 100–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahiya, R.S., Valle, M. (2013). Touch Sensing—Why and Where?. In: Robotic Tactile Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0579-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0579-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0578-4

  • Online ISBN: 978-94-007-0579-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics