Nanomaterials for Defense Applications

  • Uday Turaga
  • Vinitkumar Singh
  • Muralidhar Lalagiri
  • Paul Kiekens
  • Seshadri S. Ramkumar
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.


Nerve Agent Electrospun Nanofibers Sulphur Mustard TiO2 Nanofibers Spiral Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nanotechnology Definition by the United States National Science Foundation. Accessed on 1 July 2011
  2. 2.
    Qian L, Hinestroza JP (2004) Application of nanotechnology for high performance textiles. J Text Appar Technol Manag 4(1):1–7Google Scholar
  3. 3.
    Thandavamoorthy S, Gopinath N, Ramkumar SS (2006) Self-assembled honeycomb polyurethane nanofibers. J Appl Polym Sci 101(5):31CrossRefGoogle Scholar
  4. 4.
    Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569CrossRefGoogle Scholar
  5. 5.
    Ramkumar S, Singh V (2011) Nanofibers: new developments. Nonwovens Ind 42(4):52–58Google Scholar
  6. 6.
    Jones R (2004) The future of nanotechnology. Phys World 17(8):25–29Google Scholar
  7. 7.
    Demirdjian ZS (2011) Problems and prospects of nanotechnology: implications for marketing innovations. In: The academy of business and administrative sciences conference, Quebec City, CanadaGoogle Scholar
  8. 8.
    Knol WHC (2004) Nanotechnology and business opportunities: scenarios as awareness instrument. In: Proceedings of the 12th annual international conference on high technology small firms, Enschede, the Netherlands, pp 609–621Google Scholar
  9. 9.
    Cooley JF (1902) Apparatus for electrically dispersing fluids. US Patent 692631Google Scholar
  10. 10.
    Morton WJ (1902) Method of dispersing fluids. US Patent 0705691Google Scholar
  11. 11.
    Formhals A (1940) Artificial thread and method of producing same. US Patent 2187306Google Scholar
  12. 12.
    Yarin AL, Sinha-Ray S, Pourdeyhimi B (2011) Meltblowing: multiple polymer jets and fiber-size distribution and lay-down patterns. Polymer 52(13):2929–2938CrossRefGoogle Scholar
  13. 13.
    Jirsak O, Sanetrnik F, Chaloupek J, Martinova L, Lukas D, Kotek V (2005) A method of nanofibres production from polymer solution using electrostatic spinning and a device for carrying out the method. World Patent WO2005024101Google Scholar
  14. 14.
    Jirsak O, Dao TA (2009) Production, properties and end-uses of nanofibres. In: Nanotechnology in construction 3, Proceedings, pp 95–99Google Scholar
  15. 15.
    Wang X, Niu HT, Lin T, Wang XG (2009) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49(8):1582–1586CrossRefGoogle Scholar
  16. 16.
    Niu HT, Lin T, Wang XG (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114(6):3524–3530CrossRefGoogle Scholar
  17. 17.
    Lin T, Wang X, Wang X, Niu H (2010) Electrostatic spinning assembly. World Patent WO2010043002Google Scholar
  18. 18.
    Kim YM, Ahn KR, Sung YB, Jang RS (2009) Manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process. US Patent 7618579Google Scholar
  19. 19.
    Peng M, Sun QJ, Ma QL, Li P (2008) Mesoporous silica fibers prepared by electroblowing of a poly(methyl methacrylate)/tetraethoxysilane mixture in N, N-dimethylformamide. Micropor Mesopor Mater 115(3):562–567CrossRefGoogle Scholar
  20. 20.
    Lozano K, Sarkar K (2009) Methods and apparatuses for making superfine fibers. US Patent Appln. 20090280325 A1Google Scholar
  21. 21.
    Lozano K, Sarkar K (2009) Superfine fiber creating spinneret and uses thereof. US Patent Appln. 20090280207 A1Google Scholar
  22. 22.
    Lozano K, Sarkar K (2009) Superfine fiber creating spinneret and uses thereof. US Patent Appln. 20090269429 A1Google Scholar
  23. 23.
    Lozano K, Sarkar K (2009) Superfine fiber creating spinneret and uses thereof. US Patent Appln. 20090232920 A1Google Scholar
  24. 24.
    Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K (2010) Electrospinning to forcespinning(TM). Mater Today 13(11):12–14CrossRefGoogle Scholar
  25. 25.
    Barakat NAM, Abadir MF, Sheikh FA, Kanjwal MA, Park SJ, Kim HY (2010) Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chem Eng J 156(2):487–495CrossRefGoogle Scholar
  26. 26.
    Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma ZW, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50CrossRefGoogle Scholar
  27. 27.
    Popov AP, Priezzhev AV, Lademann J, Myllyla R (2005) TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38(15):2564–2570ADSCrossRefGoogle Scholar
  28. 28.
    Qi KH, Wang XW, Xin JH (2011) Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text Res J 81(1):101–110CrossRefGoogle Scholar
  29. 29.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRefGoogle Scholar
  30. 30.
    Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. Am Inst Chem Eng J 45(1):190–195CrossRefGoogle Scholar
  31. 31.
    Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328(1–2):90–96CrossRefGoogle Scholar
  32. 32.
    Chen L, Bromberg L, Hatton TA, Rutledge GC (2007) Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 48(16):4675–4682CrossRefGoogle Scholar
  33. 33.
    Bromberg L, Hatton TA (2005) Nerve agent destruction by recyclable catalytic magnetic nanoparticles. Ind Eng Chem Res 44(21):7991–7998CrossRefGoogle Scholar
  34. 34.
    Deng CM, Gong P, He QG, Cheng JG, He C, Shi LQ, Zhu DF, Lin T (2009) Highly fluorescent TPA-PBPV nanofibers with amplified sensory response to TNT. Chem Phys Lett 483(4–6):219–223ADSCrossRefGoogle Scholar
  35. 35.
    Mylvaganam K (2008) Carbon nanotubes build better protective body armor. Adv Mater Process 166(1):24–24Google Scholar
  36. 36.
    Tepper F, Kaledin L (2007) Coll 477-Nanostructured chem-bio nonwoven filter. Abstracts of Papers of the Am Chem Soc 234Google Scholar
  37. 37.
    Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins. Curr Microbiol 44(1):49–55CrossRefGoogle Scholar
  38. 38.
    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686CrossRefGoogle Scholar
  39. 39.
    Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715CrossRefGoogle Scholar
  40. 40.
    Mahato TH, Prasad GK, Singh B, Acharya J, Srivastava AR, Vijayaraghavan R (2009) Nanocrystalline zinc oxide for the decontamination of sarin. J Hazard Mater 165(1–3):928–932CrossRefGoogle Scholar
  41. 41.
    Prasad GK, Mahato TH, Singh B, Ganesan K, Pandey P, Sekhar K (2007) Detoxification reactions of sulphur mustard on the surface of zinc oxide nanosized rods. J Hazard Mater 149:460–464CrossRefGoogle Scholar
  42. 42.
    Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Expr Polym Lett 5(4):342–361CrossRefGoogle Scholar
  43. 43.
    Ramaseshan R, Ramakrishna S (2007) Zinc titanate nanofibers for the detoxification of chemical warfare simulants. J Am Ceram Soc 90(6):1836–1842CrossRefGoogle Scholar
  44. 44.
    Sberveglieri G, Baratto C, Comini E, Faglia G, Ferroni M, Pardo M, Ponzoni A, Vomiero A (2009) Semiconducting tin oxide nanowires and thin films for chemical warfare agents detection. Thin Solid Films 517(22):6156–6160ADSCrossRefGoogle Scholar
  45. 45.
    Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998CrossRefGoogle Scholar
  46. 46.
    Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76CrossRefGoogle Scholar
  47. 47.
    Hobson ST, Braue EH, Lehnert EK, Klabunde KJ, Decker S, Hill CL, Rhule J, Boring E, Koper O (2002) Active topical skin protectants using combinations of reactive nanoparticles and polyoxometalates or metal salts. US Patent 6410603Google Scholar
  48. 48.
    Koper O, Lucas E, Klabunde KJ (1999) Development of reactive topical skin protectants against sulfur mustard and nerve agents. J Appl Toxicol 19:S59–S70CrossRefGoogle Scholar
  49. 49.
    Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with nanosize MgO. J Phys Chem B 103(16):3225–3228CrossRefGoogle Scholar
  50. 50.
    Wagner GW, Procell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. J Am Chem Soc 123(8):1636–1644CrossRefGoogle Scholar
  51. 51.
    Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42(20):8400–8407ADSCrossRefGoogle Scholar
  52. 52.
    Wang F, Gu HW, Swager TM (2008) Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J Am Chem Soc 130(16):5392–5393CrossRefGoogle Scholar
  53. 53.
    Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chem Eur J 8(11):2602–2607CrossRefGoogle Scholar
  54. 54.
    Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637CrossRefGoogle Scholar
  55. 55.
    Houskova V, Stengl V, Bakardjieva S, Murafa N, Kalendova A, Oplustil F (2007) Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity. J Phys Chem A 111(20):4215–4221CrossRefGoogle Scholar
  56. 56.
    Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu BH, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989CrossRefGoogle Scholar
  57. 57.
    Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R (2009) Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J Hazard Mater 165(1–3):506–510CrossRefGoogle Scholar
  58. 58.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Coll Interface Sci 275(1):177–182CrossRefGoogle Scholar
  59. 59.
    Wei DW, Sun WY, Qian WP, Ye YZ, Ma XY (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344(17):2375–2382CrossRefGoogle Scholar
  60. 60.
    Stengl V, Marikova M, Bakardjieva S, Subrt J, Oplustil F, Olsanska M (2005) Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol 80(7):754–758CrossRefGoogle Scholar
  61. 61.
    Saxena A, Singh B, Srivastava AK, Suryanarayana MVS, Ganesan K, Vijayaraghavan R, Dwivedi KK (2008) Al2O3 nanoparticles with and without polyoxometalates as reactive sorbents for the removal of sulphur mustard. Micropor Mesopor Mater 115(3):364–375CrossRefGoogle Scholar
  62. 62.
    Prasad GK, Mahato TH, Pandey P, Singh B, Suryanarayana MVS, Saxena A, Shekhar K (2007) Reactive sorbent based on manganese oxide nanotubes and nanosheets for the decontamination of 2-chloro-ethyl ethyl sulphide. Micropor Mesopor Mater 106:256–261CrossRefGoogle Scholar
  63. 63.
    Sundarrajan S, Chandrasekaran AR, Ramakrishna S (2010) An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 93(12):3955–3975CrossRefGoogle Scholar
  64. 64.
    Ramaseshan R, Sundarrajan S, Liu YJ, Barhate RS, Lala NL, Ramakrishna S (2006) Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 17(12):2947–2953ADSCrossRefGoogle Scholar
  65. 65.
    Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221CrossRefGoogle Scholar
  66. 66.
    Schreuder-Gibson H, Gibson P, Wadsworth L, Hemphill S, Vontorcik J (2002) Effect of filter deformation on the filtration and air flow for elastomeric nonwoven media. Adv Filtr Sep Technol 15:525–537Google Scholar
  67. 67.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) Electrospinning and nanofibers. World Scientific Printers, SingaporeCrossRefGoogle Scholar
  68. 68.
    Kharat DK, Muthurajan H, Praveenkumar B (2006) Present and futuristic military applications of nanodevices. Synth React Inorg Metal-Org Nano-Metal Chem 36(2):231–235Google Scholar
  69. 69.
    Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296(1–2):1–8CrossRefGoogle Scholar
  70. 70.
    Hedge RR, Atul D, Kamath MG (2005) Nanofiber nonwovens. Accessed on 6 Dec 2010
  71. 71.
    Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P (2002) Polymeric nanofibers in air filtration applications. In: Proceedings of the American Filtration Seperation Society, Galveston, TXGoogle Scholar
  72. 72.
    Graham K, Gogins M, Schreuder-Gibson H (2004) Incorporation of electrospun nanofibers into functional structures. Int Nonwovens J 13(2):21–27Google Scholar
  73. 73.
    Nanofibers: a novel approach to filtration. Accessed on 6 Dec 2010
  74. 74.
    Lalagiri M, Singh V, Ramkumar SS (2011) Filtration efficiency of the composite media prepared by meltblown & electrospun nanofibers. In: Proceedings of the beltwide cotton conferences, National Cotton Council, AtlantaGoogle Scholar
  75. 75.
    Timothy G, Mark G, Marty B, James S, Ric C (2001) Nanofibers in filtration applications in transportation. In: Filtration 2001 International conference and exposition of the INDA (Association of the Nonwovens Fabric Industry), Chicago, ILGoogle Scholar
  76. 76.
    Go twice the distance with Donaldson Endurance™ air filters. Accessed on 11 July 2011
  77. 77.
    Yoon K, Kim K, Wang XF, Fang DF, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7):2434–2441CrossRefGoogle Scholar
  78. 78.
  79. 79.
    Moon J, Park JA, Lee SJ, Zyung T, Kim ID (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuator B-Chem 149(1):301–305CrossRefGoogle Scholar
  80. 80.
    Weng SH, Zhou JZ, Lin ZH (2010) Preparation of one-dimensional (1D) polyaniline-polypyrrole coaxial nanofibers and their application in gas sensor. Synthetic Met 160(11–12):1136–1142CrossRefGoogle Scholar
  81. 81.
    Lim SK, Hwang SH, Chang D, Kim S (2010) Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuator B-Chem 149(1):28–33CrossRefGoogle Scholar
  82. 82.
    Song XF, Liu L (2009) Characterization of electrospun ZnO-SnO2 nanofibers for ethanol sensor. Sens Actuators A Phys 154(1):175–179CrossRefGoogle Scholar
  83. 83.
    Nan-Rong C, Chunmeng L, Jingjiao G, James LL, Arthur JE (2007) Growth and alignment of polyaniline nanofibers with superhydrophobic, superhydrophilic and other properties. Nat Nanotechnol. doi: 10.1038/nnano.2007.147
  84. 84.
    Mahajan YR (2010) Carbon nanotubes and the pursuit of ultimate body armor. Accessed on 6 Dec 2010

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Uday Turaga
    • 1
  • Vinitkumar Singh
    • 1
  • Muralidhar Lalagiri
    • 1
  • Paul Kiekens
    • 2
  • Seshadri S. Ramkumar
    • 1
  1. 1.Nonwovens and Advanced Materials LaboratoryTexas Tech UniversityLubbockUSA
  2. 2.Department of TextilesGhent UniversityGhentBelgium

Personalised recommendations